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Abstract

The coming century is surely the century of data. A combination of blind faith and
serious purpose makes our society invest massively in the collection and processing of
data of all kinds, on scales unimaginable until recently. Hyperspectral Imagery, Internet
Portals, Financial tick-by-tick data, and DNA Microarrays are just a few of the better-
known sources, feeding data in torrential streams into scientific and business databases
worldwide.

In traditional statistical data analysis, we think of observations of instances of par-
ticular phenomena (e.g. instance ↔ human being), these observations being a vector
of values we measured on several variables (e.g. blood pressure, weight, height, ...).
In traditional statistical methodology, we assumed many observations and a few, well-
chosen variables. The trend today is towards more observations but even more so, to
radically larger numbers of variables – voracious, automatic, systematic collection of
hyper-informative detail about each observed instance. We are seeing examples where
the observations gathered on individual instances are curves, or spectra, or images, or
even movies, so that a single observation has dimensions in the thousands or billions,
while there are only tens or hundreds of instances available for study. Classical methods
are simply not designed to cope with this kind of explosive growth of dimensionality of
the observation vector. We can say with complete confidence that in the coming cen-
tury, high-dimensional data analysis will be a very significant activity, and completely
new methods of high-dimensional data analysis will be developed; we just don’t know
what they are yet.

Mathematicians are ideally prepared for appreciating the abstract issues involved
in finding patterns in such high-dimensional data. Two of the most influential prin-
ciples in the coming century will be principles originally discovered and cultivated by
mathematicians: the blessings of dimensionality and the curse of dimensionality.

The curse of dimensionality is a phrase used by several subfields in the mathematical
sciences; I use it here to refer to the apparent intractability of systematically searching
through a high-dimensional space, the apparent intractability of accurately approxi-
mating a general high-dimensional function, the apparent intractability of integrating
a high-dimensional function.

The blessings of dimensionality are less widely noted, but they include the concen-
tration of measure phenomenon (so-called in the geometry of Banach spaces), which
means that certain random fluctuations are very well controlled in high dimensions and
the success of asymptotic methods, used widely in mathematical statistics and statis-
tical physics, which suggest that statements about very high-dimensional settings may
be made where moderate dimensions would be too complicated.
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There is a large body of interesting work going on in the mathematical sciences,
both to attack the curse of dimensionality in specific ways, and to extend the benefits
of dimensionality. I will mention work in high-dimensional approximation theory, in
probability theory, and in mathematical statistics. I expect to see in the coming decades
many further mathematical elaborations to our inventory of Blessings and Curses, and I
expect such contributions to have a broad impact on society’s ability to extract meaning
from the massive datasets it has decided to compile.

At the end of my talk, I will also draw on my personal research experiences. This
suggest to me (1) ongoing developments in high-dimensional data analysis may lead
mathematicians to study new problems in for example harmonic analysis; and (2) that
many of the problems of low dimensional data analysis are unsolved and are similar to
problems in harmonic analysis which have only recently been attacked, and for which
only the merest beginnings have been made. Both fields can progress together.
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1 Introduction

1.1 August 8, 2000

The morning of August 8, 1900, David Hilbert gave an address at the International Congress
of mathematicians in Paris, entitled ‘Mathematical Problems’ [50, 24]. Despite the fact
that this was not a plenary address and that it was delivered as part of the relatively non-
prestigious section of History and Philosophy of Mathematics, Hilbert’s lecture eventually
came to be considered as the most important event of that Congress. In that lecture,
Hilbert laid out 23 problems or problem areas which he had identified as important for the
future development of mathematics; over the ensuing decades, the problem list attracted
a great deal of attention and many of the problems were attacked energetically and even
solved. In fact the lecture is very readable – see [27] for English translations of the article
that Hilbert later published.

Today, the morning of August 8, 2000, we are gathered together exactly a century after
Hilbert’s address, to consider the Mathematical Challenges of the Twenty-First century.
Other talks at this conference cover a wide range of fascinating and deep problems, and
are to be delivered by eminent and supremely talented mathematicians of towering achieve-
ments. This conference is in a very obvious sense an homage to Hilbert’s inspired idea.
And it is not the only one; I am aware of other conferences organized under the same spell.

1.2 Hot Air?

Presumably we are here today because we take the topic seriously, and we think that what
we say might in fact, like the Hilbert problems, have some bearing on, or at the very least,
weak correlation with, the development of mathematics in the coming century.

There is a risk of heaviness and pretentiousness in such an undertaking. To reduce this,
I have chosen a perhaps peculiar topic and narrative line for this presentation.

I’d like to focus on a set of issues I have learned about over the last quarter century as I
progressed through my scientific career. I am absolutely convinced that these themes I will
raise represent major societal and scientific trends in the coming century, that mathematics
has had significant contributions to these areas in the past, that it can play a significant
role in the future, that it would be valuable to the audience to be reminded of these trends,
and that most of the audience will find something to ‘latch onto’ in what I say. I do
not report here existing results of awesome mathematical depth, certainly nothing that
could compete with the intricate issues being discussed here in connection with famous and
longstanding problems of topology, analysis and algebra. Perhaps one of my messages is
that should mathematics provide such results, there would be major impacts, and that I
think results in that direction are possible. However, another of my messages is that the
apparent superficiality of some of these ideas is itself worth taking note of, and presenting
another kind of challenge for mathematics in the coming century.

1.3 John Tukey

As I was preparing this lecture, I received the sad news that John Wilder Tukey, Professor
Emeritus at Princeton, had had a stroke. A few weeks later I received the even more
distressing news that he had passed away. His obituary appeared July 28, 2000 in the New
York Times.
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John Tukey was my undergraduate Thesis adviser at Princeton, and had a great deal
to do with my intellectual development in the crucial years from age 17 to 21 - both
through his personal interactions with me, and through his writings and impact on the
Statistics profession This is my first lecture since his passing, and I am dedicating it to
John’s memory. This is particularly fitting since, as we shall see, John’s interests and life
story are intertwined with the themes I am going to present.

Many in the audience will know of Tukey’s more visible distinctions. He coined the
words ‘Software’ and ‘Bit’, creating a lasting contribution to the English language; he and
collaborators discovered two FFT algorithms and thereby fomented a revolution in signal
processing and applied mathematics. Some in the audience will know more than these
basics; in fact Tukey made fundamental contributions in many areas of the mathematical
sciences. Working in topology in the 1930’s, he invented filters and ultrafilters before
Bourbaki, but chose the unfortunate name ‘Phalanx’; he contributed a form of the Axiom
of Choice, now named after him; he discovered basic phenomena in connection with stable
laws in probability theory, with nonparametric spectral density estimation, and with higher-
order statistics. He initiated major research fields in statistics – multiple comparisons and
robust statistical methods. He was also a prophet, recognizing important issues decades
before their time, for example the importance of non-Gaussianity in data and non-Linearity
in signal processing.

In this talk I will not make an attempt to do real justice to the breadth and extent of his
contributions. His abilities were recognized, both with impressive posts at Princeton and
at Bell Labs, with membership of key science policy committees at the National Research
Committee, with the IEEE Medal – a substantial distinction that few other mathematical
scientists (if any) have been granted – and with the National Medal of Science.

It is important for the audience to know that John was very idiosyncratic, having been
home schooled, and so had unusual means of self-expression; he also drew on an unusually
broad array of knowledge (he was trained as a chemist before entering mathematics). He
invented words left and right, many of which were not as apposite as ‘bit’. John often
purposely mangled words, for example dyslexing spectrum to make ‘cepstrum’, and he
also invoked action phrases in place of established (numbing) terminology, using the overly
evocative term ‘head-banger’ to describe a thresholding operation, and so on – the examples
could go on endlessly. Talking to John often required a lengthy initiation into a new
terminology that he was trying out at the time, based on recent thinking of his – some
times about things he’d only been thinking about that day. I once worked as John’s
interpreter, accompanying Tukey to an industrial research lab, (I hope) explaining what he
had in mind to a group of conventionally trained scientists.

The essayist Lionel Trilling has defined a Genius as one who exhibits a very strong
personality, to the point of being a ‘type’, which gets expressed thoroughly in their entire
intellectual output [60]. An important point for Trilling is that the Genius is consistently
driven to express his uniqueness of vision and personality, whether or not they are correct
or appropriate to the situation at hand. Trilling contrasted this with a kind of anti-genius,
an intellectual with no distinctive vision or personality, but who struggles with the situation
at hand rather than with the expression of deeper or broader drives and intuitions. John
was indeed a Genius in Trilling’s sense; he sensed many things far ahead of his time, and his
unique cast of mind and expression helped him to bring up issues that could not otherwise
have found expression in the mathematical sciences of his time. Those close to him recognize
the greatness of this aspect of his personality and biography, a greatness which is hard to
provide traditional recognition.
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On the other hand, all should recognize that despite his status as Bona Fide Genius,
not all John’s ideas led to happy successes, even those in which he made great investments.

1.4 Data Analysis

A major initiative of Tukey’s, at the peak of his eminence in the 1960’s, was to recognize
Data Analysis as an emerging activity/discipline, one distinct from Mathematical Statistics,
and requiring its own literature.

This was in some ways a strange initiative. In the 1960’s Tukey founded robust statistics
(robust linear regression, contaminated normal distribution, 1962) nonlinear signal process-
ing (cepstrum 1962), fast Fourier transforms (1964). Simply elaborating his many ideas in
these directions could have led to an honored and very rewarding career. However, in 1962,
in a major Plenary address at the annual meeting of the Institute of Mathematical Statis-
tics, entitled ‘The Future of Data Analysis’, he began a provocative initiative which he
maintained for the next 15 years, through the publication of ‘Exploratory Data Analysis’.

The initiative was important because in some ways it functioned for statistics like the
Hilbert Problems, being widely cited, and inspiring many young persons, myself included.
The initiative was however, not greeted with universal approval; in fact it was viewed as
scandalous in some quarters [65]. The ‘Future of Data Analysis’ has, in the end, functioned
as a kind of Hilbert Problems in reverse, arguing that a certain kind of de-emphasis of
mathematical problem solving in statistics is called for, in fact an abandonment of many
of the traditional precepts by which intellectual life in academic statistics had been de-
veloping. Tukey’s obituary in the Times chose to emphasize, not his serious mathematical
achievements, but exactly this aspect: a respected mathematician turning his back on proof,
focusing on analyzing data rather than proving theorems. For example, statistician Howard
Wainer is quoted by the Times on this recusal:

”He legitimized that, because he wasn’t doing it because he wasn’t good at
math,” Mr. Wainer said. ”He was doing it because it was the right thing to
do.”

So what was Tukey’s vision in the early 1960’s? Roughly speaking, and I do not cite
chapter and verse here, not knowing if I can produce a specific citation, we can say that
Tukey made the points: Data are here now, they’ll be coming on more and more in the
future, we must analyze them, often using very humble means, and insistence on mathe-
matics – for example on deep mathematical analysis and proof – will likely distract us from
recognizing these fundamental points.

In the article “Data Analysis, including Statistics” (1968) written with Fred Mosteller,
Tukey made the polemical point that data analysis was a potentially huge field, into which
statistics – with its grounding as a subdiscipline of the mathematical sciences, via proba-
bility theory, decision theory, and analysis – fit only as a small segment. In that article,
Mosteller and Tukey called attention to new sources of data – such as Satellites – auto-
matically generating huge volumes of data, whose assimilation called for a wide variety of
data processing and analysis tools. In that telling, the traditional ideas of mathematical
statistics, of inferential ideas such as hypothesis testing and confidence statements, had
relatively little to offer, but there was an enormous amount to be done, and much of it
could be done with rather homely means.

In other articles, Tukey also tried to emphasize the separateness of data analysis from
mathematics. I remember well some of the basic themes: data analysis is an activity all its
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own, a kind of lifelong avocation; one does not need to be a mathematician to be a data
analyst – in fact there is no connection, one could as well be a biologist, etc.

There was initial resistance to Tukey’s message in the community of mathematical
statisticians; in fact some objected that Tukey’s original address on the ‘Future of Data
Analysis’ had no business being presented in such a forum of mathematical scientists [65].
On the other hand, a data analysis community crystallized around Tukey’s conception, and
its descendant communities are visible today, a substantial body of academic and industrial
statisticians that emphasize data analysis over mathematical analysis and proof.

1.5 Data Analysis Today

Tukey was certainly correct about many things in taking up this initiative. Today, the
world is awash in data, as I will describe below, and there are many more data analysts than
there are statisticians; conferences in genomics, in remote sensing, in financial engineering,
and other fields together tens of thousands of professionals to analyze data. The size of
the mathematical statistics profession is very small next to the size of the data analysis
profession. And data analysis is growing at a heady rate.

The ensuing patterns of thought are quite distinct from mathematics. The practitioners
use some mathematical concepts in their work, but mathematical analysis is not heavily
used, and theorems are not considered important. Part of this is because, owing to computer
simulation, we no longer need theorems as much in day-to-day data analysis, but also
because the cultural orientation in these fields places little emphasis on the theorem as
a valuable cultural artifact. This last feature can also can be identified with Tukey, as
mentioned in the quote from his Times Obituary cited earlier.

1.6 Break From the Past

Let me emphasize just how distinct from the mathematical tradition the data analysis
community has become. Each year there are dozens of conferences on topics ranging from
genomics to satellite imagery to chemometrics, in which the scientific modus operandi is:
propose a new kind of phenomenon or a new kind of artifact in data, suggest a processing
strategy that on heuristic grounds should ameliorate it, and report a computational example
or two which shows that the strategy has at least a few apparent successes. There is often

• No formal definition of the phenomenon or artifact, in terms of a carefully stated
mathematical model.

• No formal derivation of the proposed processing strategy, suggesting that it is in some
sense naturally associated with the phenomenon to be treated.

• No formal analysis justifying the apparent improvement in simulations

This is a far cry from the intellectual traditional of mathematics.

1.7 Statistics and Mathematics

And of statistics. For some in the audience, it will be important to recall that things have
not always been as they are now. Before the development of the ‘data analysis’ movement,
statistics was closely tied to mathematics and theorems. Many of the most commonplace
tools in everyday data analysis were created by mathematically talented individuals and
supported by mathematically inspired standards of argument.
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In fact, Gauss and Laplace made lasting contributions to statistical data analysis.
Fourier was supported, at his low point following Napoleon’s banishment, by a sinecure
at an institute of Statistics. In the 1930’s, Kolmogorov and Wiener both made substantial
contributions to the foundation of statistical methodology.

There is also a tradition going in the other direction, of statisticians stimulating math-
ematical developments. In the twentieth century, we can mention Harold Hotelling, who
originated the method of Principal Components, and who stimulated the well-known work
of Hermann Weyl on the Volume of Tubes. Hotelling gave a talk on a statistical problem
at Princeton which attracted Weyl’s interest; out of this grew simultaneous publication in
a single issue of Amer. J. Math. of a statistical paper by Hotelling [29] and a differential-
geometric paper by Weyl [68]. Out of this grew a substantial amount of modern differential
geometry.

Even if we focus attention on the basic tools of modern data analysis, from regression
to principal components, we find they were developed by scientists working squarely in the
mathematical tradition, and are based on theorems and analysis. Finally, let me say that
there is a quite active and vigorous community of mathematical statisticians!

1.8 Far Enough Down That Road

I would now like to propose that Tukey’s insight has run its course. Undoubtedly Tukey
was right to emphasize the need for a schism, in which Data Analysis would form a sep-
arate culture from Mathematical Statistics. Over the last forty years, Data Analysis has
developed at breakneck pace, responding to the rapid advances in information technology:
massive data storage, rapid throughput, effective algorithms for basic problems. Over the
last twenty years particularly, the largest contributions of statistics to data analysis have
been in the formalization of information technology for data analysis, in the form of software
packages like S and S-Plus, CART, Data Desk, GLIM, MacSpin, and in the identification of
ways we can use information technology to substitute for analysis – bootstrap, Monte-Carlo
Markov Chain.

However, this trend is, I think, now complete; it is highly unlikely that further develop-
ments in information technology will do much to solve any of the existing important struc-
tural problems for data analysis. Moreover, those fundamental problems are omnipresent,
and now that the Data Analysis movement has insinuated itself into every branch of so-
ciety, they affect many fields simultaneously. And the missing ingredient in facing those
problems, it seems to me, is mathematics.

1.9 This Talk

In this talk I will reconsider data analysis and its relation to the mathematical sciences. I
will suggest that, while over the last forty years, data analysis has developed by separating
itself from its mathematical parent, there is now need for a reconnection, which might yield
benefits both for mathematics and for data analysis.

We are now in a setting where many very important data analysis problems are high-
dimensional. Many of these high-dimensional data analysis problems require new or dif-
ferent mathematics. A central issue is the curse of dimensionality, which has ubiquitous
effects throughout the sciences. This is countervailed by three blessings of dimensionality.
Coping with the curse and exploiting the blessings are centrally mathematical issues, and
only can be attacked by mathemetical means.
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I will finish on a personal note, pointing out some recent research experiences which
suggest to me that modern data analysis has actually reached a point that it can pose stim-
ulating new questions to established mathematical disciplines such as harmonic analysis.

2 Data

Over the last few decades, data, data management, and data processing have become
ubiquitous factors in modern life and work. In this section, I will remind the audience of a
few indicators of a major societal trend.

2.1 Recent Data Trends

Huge investments have been made in various data gathering and data processing mech-
anisms. The information technology industry is the fastest growing and most lucrative
segment of the world economy, and much of the growth occurs in the development, man-
agement, and warehousing of prodigious streams of data for scientific, medical, engineering,
and commercial purposes. Some recent examples include:

• Biotech Data. Virtually everyone is aware of the fantastic progress made in the last
five years in gathering data about the human genome. A common sight in the press
is pictures of vast warehouses filled with genome sequencing machines working night
and day, or vast warehouses of compute servers working night and day, as part of this
heroic effort [53].

This is actually just the opening round in a long series of developments. The genome
is only indirectly related to protein function and protein function are only indirectly
related to overall cell function. Over time, the focus of attention will go from genomics
to proteomics and beyond. At each round, more and more massive databases will be
compiled.

• Financial Data. Over the last decade, high-frequency financial data have become
available; in the early to mid 1990’s data on individual currency trades, became
available, tracking individual transactions. Now with the advent of new exchanges
such as Island.com, one can obtain individual bids to buy and sell, and the full
distribution of such bids.

• Satellite Imagery. Providers of satellite imagery have available a vast database of
such images, and hence N in the millions. Projects are in place to compile databases
to resolve the entire surface of the earth to 1 meter accuracy. Applications of such
imagery include natural resource discovery and agriculture.

• Hyperspectral Imagery. It is now becoming common, both in airborne photographic
imagery and satellite imagery to use hyperspectral cameras which record, instead
of three color bands RGB, thousands of different spectral bands. Such imagery is
presumably able to reveal subtle information about chemical composition and is po-
tentially very helpful in determining crop identity, spread of diseases in crops, in
understanding the effects of droughts and pests, and so on. In the future we can
expect hyperspectral cameras to be useful in food inspection, medical examination,
and so on.
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• Consumer Financial Data. Every transaction we make on the web, whether a visit,
a search, a purchase, is being recorded, correlated, compiled into databases, and sold
and resold, as advertisers scramble to correlate consumer actions with pockets of
demand for various goods and services.

2.2 Extrapolation of Trends

The existing trends are likely to accelerate in the future, as each year new sensors, sources
of data are invented, we scale to higher densities. A very important additional trend is that
society will more and more think of itself as a data-driven society, a consumer of data.

It is becoming accepted that there is a data industry, that firms devoted to the creation
and management of data – for example biotech companies – can be as valuable as firms
creating physical tangible objects.

It is also becoming accepted that consumers will agree to become data processors. For
example, a few years ago, a 1024*1024 image was considered quite a substantial object for
handling on a modern computer, and only computer scientists were really working with
digital imagery. Now, consumer cameras costing a few hundreds of dollars, generate such
images routinely. Consumers are becoming familiar with the process of capturing images,
downloading them onto their home computers, processing them with various software tools,
creating custom imagery. Such consumer acceptance will doubtless fuel further investment
and technological development.

2.3 Ubiquity of Data Supply

Another important trend is the open availability of data, for example over the internet. We
see this everywhere; I will mention just two striking examples:

• www.Island.com makes available to everyone information of unprecedented detail
about the functioning of a public stock exchange. A user with a web browser can
obtain attractive presentations of all pending bids to buy and sell a certain stock at
a certain time.

• www.DoubleTwist.com makes available annotated genomic data over the web to pay-
ing corporate customers. One gets not only the genome, but also a wealth of infor-
mation correlated to it.

2.4 Ubiquity of Data Demand

We can envision a future in which data becomes as widely consumed as entertainment.
In his book Mirror Worlds, David Gelertner proposes a vision of a world-to-arrive-real-

soon-now in which data and computing are ubiquitous, and a new kind of relationship of
people to data emerges. In this new world, measurements and compilations about essentially
any conceivable quantities are freely available over the network, to people in their homes
(for example); data could include everything conceivable. For those interested in their
locality, they could tap into data ranging from municipal expenditures by category to
current automobile traffic on key thoroughfares. The data would be continuously updated.
In this new world, people, more or less as hobbies, would tap into data of interest, develop
a computer simulation of the real-world system, and visualize that simulation. The whole
confluence would be a mirror world. One could imagine a mirror world on one’s coffee table,
embodied in a high-resolution 3-D display, showing the viewer the dynamic development of
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a municipality, or a town one is about to visit, or abstractly representing a distant political
conflict, ... There could be many mirror worlds of interest to a given user; they could
be traded around, personalized, improved. Mirror worlds could replace home aquariums
(respectively econometric forecasts) as objects of affection (respectively concern). Like pets,
we could have breeding of mirror worlds (improving characteristics by combining ideas from
several mirror worlds). Like current IT software megapackages, we could have selling of
mirror worlds for millions of dollars, if they addressed the needs of corporate decision
makers.

It is assumed that the job of accessing the data, simulating the system, and visualizing
the system would be very easy, because of some fundamental advances in how we do those
tasks. So ‘everyone’ would want to be involved in the breeding and inspection of mirror
worlds about issues of concern to them.

2.5 Compulsion to Data-Based Simulation

One aspect of this vision which should be faced is the compelling nature of visualization by
computational simulation. Simply put, there is a big wow-factor in using the computer to
simulate systems and present the results of simulation. This wow-factor can be dismissed
by some mathematicians, committed to analysis and intellectual depth, as a superficial
attribute, but vast numbers of others will be deeply moved by this vision.

Recent initiatives to build an e-cell [18] has attracted substantial amounts of attention
from science journalists and science policy makers [7]. Can one build computer models
which simulate the basic processes of life by building a mathematical model of the basic
cycles in the cell and watching the evolution of what amounts to a system of coupled
nonlinear ODE’s? The question is open, but the demand cannot be doubted. The soon-
to-be released MCell work [42] with its graphical evocation of molecular processes, seems
likely to obtain an even broader response than e-cell, partly because of its evocation of
spatial and stochastic components of cellular processes.

The appeal of such evocations will only increase with time. I expect to see that data-
driven simulation efforts will gain tremendous attention and ultimately become ubiquitous
in every field.

The current generation of teenagers has been raised by spending endless hours playing
simulation games. A typical one, Soccer Manager 2000 is a data-rich simulation game, in
which all the major teams and talents of the soccer world are available – the true teams, the
true players, with faithful statistical characteristics. The game player analyzes the team
and player and makes changes away from real team compositions and plays fantasy games.

As the generation weaned in this way matures and becomes consumers and decisions
makers, we can expect that building and modifying data-driven simulations will become a
ubiquitous aspect of normal life. This will create an amazing demand for data.

2.6 How Useful is all This?

One can easily make the case that we are gathering too much data already, and that fewer
data would lead to better decisions and better lives [57]. But one also has to be very naive
to imagine that such wistful concerns amount to much against the onslaught of the forces I
have mentioned. Reiterating: throughout science, engineering, government administration,
and business we are seeing major efforts to gather data into databases. Much of this is
based, frankly, on blind faith, a kind of scientism, that feels that it is somehow intrinsically
of worth to collect and manage data. In some cases commercial enterprises have made huge
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bets, assuming that knowledge of consumer web surfing clickstreams can be sold, traded or
otherwise leveraged into value.

Similarly, giant investments have been made to decode the human genome and make it
available to biological researchers. It is claimed that somehow this data will translate into
an understanding of protein expression, and then to underlying biology and biochemistry.

We can’t say at the moment whether such assumptions will prove valid or not. What
we can say is that our society has chosen to gather massive amounts of data, that this trend
is accelerating yearly, and that major efforts are underway to exploit large volumes of data.

3 Data Matrices

While data can be bewilderingly diverse, for the purposes of a talk like this one, we focus
on a single uniform data structure, allowing us to describe a great number of applications
with great economy.

We will consider what statisticians consider the usual data matrix, a rectangular array
with N rows and D columns, the rows giving different observations or individuals and
the columns giving different attributes or variables. In a classical setting we might have a
study like the Framingham Heart study, with data gathered very carefully over decades,
and ultimately consisting of about N = 25, 000 records about the individual residents of
Framingham Massachussets on D = 100 variables.

We now mention some recent examples we are aware of indicating the broad range of
applications where we can have N by D data matrices.

3.1 Web Term-Document Data

Document retrieval by web searching has seen an explosive growth and acceptance over the
last 5 years. One approach to document retrieval is the vector space model of information
retrieval. In this model, one compiles term-document matrices, N by D arrays, where N ,
the number of documents, is in the millions, while D, the number of terms (words), is in
the tens of thousands, and each entry in the array measures the frequency of occurrence of
given terms in the given document, in a suitable normalization.

Each search request may be viewed as a vector of term frequencies, and the Matrix-
Vector product of the Term-Document matrix by the search vector measures. [6, 45]

3.2 Sensor Array Data

In many fields we are seeing the use of sensor arrays generating vector-valued observations
as a functions of time. For example, consider a problem in study of evoked potential analysis
in neuroscience. An array of D sensors is attached to the scalp, with each sensor records
N observations over a period of seconds, at a rate of X thousand samples, second. One
hopes to use such data to witness the response of human neural system to various external
stimuli. The array aspect allows one potentially to localize various effects within the head.
[34].

3.3 Gene Expression Data

A very “hot” data analysis topic at the moment involves gene expression data. Here we
obtain data on the relative abundance of D genes in each of N different cell lines. The
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details of how the experiment works are pointed to from [5]. The goal is to learn which
genes are associated with the various diseases or other states associated with the cell lines.

3.4 Consumer Preferences Data

Recently on the world-wide-web we see the rise of attempts to gather information about
browsing and shopping behavior of consumers – along with demographics and survey re-
sults – and to use this to modify presentation of information to users. Examples include
recommendation systems like used at NetFlix and Amazon, and personalization systems
like Xamplify. We mention briefly the NetFlix scheme http://www.netflix.com. Each
consumer is asked to rate about 100 films; based on that rating, the consumer is compared
to other customers with similar preferences, and predictions are made of other movies which
might be of interest to the consumer based on experiences of other customers who viewed
and rated those movies.

Here we have a rectangular array giving responses of N individuals on D movies, with
N potentially in the millions and D in the hundreds (or eventually, thousands).

3.5 Consumer Financial History

Stine and Foster [56] give an example of credit card transaction records on 250,000 con-
sumer/months, where several dozen variables (deomgraphics/payment history) are available
on each consumer. Here N is 250,000 and D is in the thousands.

3.6 Tick-by-Tick Financial Data

In the past decade, there has been a radical improvement in the availability of high-
frequency financial data, not just on stocks and bonds in say the US exhachanges, but
on markets of all scales and locations. [15] is a book-length treatment describing treatment
of high frequency tick-by-tick currency transaction data. One can imagine an N by D array
with D variables giving a dozen or so exchange rates of foreign currencies to the dollar,
while N time samples (with N large give the exchange rates on time scales of the very fine,
extending perhaps for a very long period of time.

3.7 Imagery

We can view a database of images as an N -by-D data matrix. Each image gives rise to an
observation; if the image is n by n, then we have D = n2 variables. Different images are
then our different individuals. We give an example in Figure

3.8 Hyperspectral Imagery

New optical sensors are able to obtain imagery not just with red-green-blue color sensitivity,
(3 numbers per pixel) but instead a full spectrum with thousands of frequency bands being
measured. Thus an image is not just, say, a 4096*4096 pixel array, but a 4096*4096*1024
pixel volume. Such data can be viewed as an N by D array. Suppose we have I images
in our database, each of size n by n with S spectral bands. We can let D = S and let
N = In2.
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4 Data Analysis

In studying an N -by-D data matrix, we often refer to it as D-dimensional – because we
take the view of N points in a D-dimensional space. In this section we describe a number
of fundamental tasks of data analysis. Good references on some of these issues include
[41, 51, 66]; I use these often in teaching.

4.1 Classification

In classification, one of the D variables is an indicator of class membership. Examples
include: in a consumer financial data base, most of the variables measure consumer payment
history, one of the variables indicates whether the consumer has declared Bankruptcy, the
analyst would like to predict bankruptcy from credit history; in a hyperspectral image
database all but one of the variables give spectral bands, an extra variable gives an indicator
of ground truth chemical composition; the analyst would like to use the spectral band
information to predict chemical composition.

Many approaches have been suggested for classification, ranging from identifying hyper-
planes which partition the sample space into non-overlapping groups, to k-nearest neighbor
classification; see [51].

4.2 Regression

In regression setting, one of the D variables is a quantitative response variable. The other
variables are used to predict it. Examples include: in a financial data base, the variability of
exchange rates today, given recent exchange rates; in a hyperspectral database an indicator
of chemical composition. There is a well-known and widely used collection of tools for
regression modeling; see [66, 22].

In linear regression modeling, we assume that the response depends on the predictors
linearly,

Xi,1 = a0 + a2Xi,2 + . . . + aDXi,D + Zi; (1)

the idea goes back to Gauss, if not earlier. In nonlinear regression modeling, we assume
that the response depends on the predictors in a general non linear fashion,

Xi,1 = f(Xi,2, . . . , Xi,D) + Zi. (2)

Linear regression modeling involves mostly linear algebra: the estimated coefficients of the
least-squares method can be obtained by â = (XT X)−1XT Y , where Y is the column vector
of response data. Nonlinear regression can involve: local linear fits, neural nets, radial basis
functions, etc.

4.3 Latent Variables Analysis

In latent variables modeling we propose that

X = AS

where X is a vector-valued observable, S is a vector of unobserved latent variables, and
A is a linear transformation converting one into the other. Often, the hope is that a few
underlying latent variables are responsible for essentially the structure we see in the array
X, and by uncovering those variables, we have achieved important insights.

13



Principal Component Analysis [28, 35, 38] is an early example of this. One takes the
covariance matrix C of the observable X, obtains the eigenvectors, which will be orthogonal,
bundles them as columns in an orthogonal matrix U and defines

S = U ′X.

Hence we have the latent variable form with A = U .
This tool is widely used throughout data analysis in the sciences, engineering, and

commercial applications. Projection on the space spanned first k eigenvectors of C gives
the best rank k approximation to the vector X in a mean square sense.

A now standard application comes in latent semantic indexing, where it is used to per-
form web searching [6, 45]. One extends the PCA method to a singular value decomposition
factorization

X = UDV ′

where now V is the matrix of eigenvectors of C and D is the diagonal matrix with square
roots of the eigenvalues of C. A query is a vector α indicating a list of terms to search for
and responses are sorted based on values of

UDkV
′α

to find documents with large query values, here Dk is a k-term approximation to the
diagonal matrix D keeping only the k biggest terms. In effect the k-term approximation
causes grouping of both terms and documents together, so that one can obtain ‘hits’ on
documents that do not contain the precise term used, but that do contain a highly correlated
term or terms.

PCA has been tried in image analysis, where it has been used to study images of faces.
In that application, the eigenvectors can be viewed as images – “eigenfaces” – searching
for matches of faces in a database of faces can then be processed in a fashion similar to the
LSI model: if α gives the data vector for a new face, look for large entries in the output of
the rank-k approximation for appropriate k, in

UDkV
′α.

In the last decade, an important alternative to PCA has been developed: ICA – inde-
pendent components analysis [13, 2, 11]. It is valuable when, for physical reasons, we really
expect the model X = AS to hold for an unknown A and a sparse or nonGaussian S. The
matrix A need not be orthogonal.

An example where this occurs is with Array Data, where one assumes there are several
sources, each one coupled with different strength to different sensors (for example, based
on proximity of source to sensor). A typical example is the cocktail party problem: one has
several microphones and several human speakers, the speakers are talking simultaneously
and each microphone is picking up all the speakers at once.

In the talk we give an example based on EEG data by Jung et al. [34] from Terry
Sejnowski’s lab.

4.4 Clustering

Cluster Analysis could be considered a field all its own, part art form, part scientific under-
taking. One seeks to arrange an unordered collection of objects in a fashion so that nearby
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objects are similar. There are many ways to do this, serving many distinct purposes, and
so no unique best way.

An obvious application area would be in latent semantic indexing, where we might seek
an arrangement of documents so that nearby documents are similar and an arrangement of
terms so that nearby terms are similar. See for example [45].

Because we have mentioned gene expression data earlier, we briefly mention a figure
presented earlier in the talk showing a gene expression array, (figure taken from [26]) while
a figure based on a modern clustering method shows the array after suitable permutation
of entries according to cluster analysis.

Recently, more quantitative approaches have been developed, of which we mention two
here.

The first, Gene Shaving, is described in [26]; it has been developed by a team of statis-
ticians and bioinformaticists,including my Stanford colleagues Hastie and Tibshirani. The
underlying model is

Xi,j = µ0 +
K∑

k=1

αkβ
T
k

where each βk is a D-vector, each αk is an N vector taking values 0 and 1, and in addition
is sparse (relatively few 1’s). An iterative, heuristic algorithm is used to fit layers k =
1, 2, . . . , K of the gene expression array.

The second, Plaid Modelling, [36] has been developed by my Stanford colleagues Lazze-
roni and Owen. It seeks in addition to constrain each vector βk to have entries either 0 and
1.

Xi,j = µ0 +
K∑

k=1

µkαkβ
T
k

Again an iterative, heuristic algorithm is used to fit layers of the gene expression array,
layers k = 1, 2, . . . , K, one at a time.

The two models differ in that plaid models have a complete 0-1 nature, giving a strict
clustering form, while Gene Shaving clusters rows but does not constraint individual rows
to have constant behavior.

5 High-Dimensionality

Our examples show that we are in the era of massive automatic data collection, system-
atically obtaining many measurements, not knowing which ones will be relevant to the
phenomenon of interest. Our task is to find a needle in a haystack, teasing the relevant
information out of a vast pile of glut.

This is a big break from the original assumptions behind many the tools being used in
high-dimensional data analysis today. For many of those tools, it was assumed that one was
dealing with a few well-chosen variables, for example, using scientific knowledge to measure
just the right variables in advance.

But we shouldn’t read anything pejorative into the fact that we don’t know which
variables to measure in advance. For example consider the functional data analysis case
[49], where the data are curves (for example, in the hyperspectral imaging case where the
data are spectra). The ideal variables might then turn out to be the position of certain
peaks in those curves. What we measure automatically and reliably is the curves themselves,
which we later can hope to analyze for peaks.
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This post-classical world is different in many ways from the ‘classical world’. The basic
methodology which was used in the ‘classical world’ no longer is not strictly-speaking appli-
cable. More or less, the theory underlying previous approaches to data analysis was based
on the assumption of D < N , and N → ∞. Many of the intellectually cleanest results
concern properties of observations which were multivariate normal, and used extensively
tools from linear algebra and from group theory to develop some exact distributional re-
sults. These results all fail if D > N . Even worse, they envision an asymptotic situation in
which N → ∞ with D fixed, and that also seems contradicted by reality, where we might
even have D tending to ∞ with N remaining fixed.

The D > N case is not anomalous; it is in some sense the generic case. For many
types of event we can think of, we have the potential of a very large number of measurable
quantifying that event, and a relatively few instances of that event. Examples include:

• Many genes, relatively few patients with a given genetic disease.

• Many samples of a persons’ speech, relatively few speakers sampled.

It is in facing this intrinsic high dimensionality that I perceive there are great opportu-
nities to make a contribution. I will now develop this theme more carefully.

In effect, we need to develop tools for the high dimensional case. These will often
have a different spirit than in the past, as they will often be approximations, bounds, and
asymptotics, whereas so much of classical multivariate analysis was beautifully exact (in
the normal case). The new spirit will require different skills and will attract different kinds
of scientists.

6 Curse of Dimensionality

6.1 Origins of the Phrase

The colorful phrase the ‘curse of dimensionality’ was apparently coined by Richard Bel-
man in [3], in connection with the difficulty of optimization by exhaustive enumeration on
product spaces. Bellman reminded us that, if we consider a cartesian grid of spacing 1/10
on the unit cube in 10 dimensions, we have 1010 points; if the cube in 20 dimensions was
considered, we would have of course 1020 points. His interpretation: if our goal is to opti-
mize a function over a continuous product domain of a few dozen variables by exhaustively
searching a discrete search space defined by a crude discretization, we could easily be faced
with the problem of making tens of trillions of evaluations of the function. Bellman argued
that this curse precluded, under almost any computational scheme then foreseeable, the
use of exhaustive enumeration strategies, and argued in favor of his method of dynamic
programming.

We can identify classically several areas in which curse of dimensionality appears.

• In Optimization, Bellman’s original usage. If we must approximately optimize a
function of D variables and we know only that it is Lipschitz, say, then we need order
(1/ε)D evaluations on a grid in order to obtain an approximate minimizer within error
ε .

• In Function Approximation. If we must approximate a function of D variables and
we know only that it is Lipschitz, say, then we need order (1/ε)D evaluations on a
grid in order to obtain an approximation scheme with uniform approximation error ε
.
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• In Numerical Integration. If we must integrate a function of d variables and we know
only that it is Lipschitz, say, then we need order (1/ε)D evaluations on a grid in order
to obtain an integration scheme with error ε .

The mathematics underlying these facts are all obvious; it is not the depth of the phe-
nomenon that is noteworthy – for surely this is very superficial observation – but its ubiq-
uity.

6.2 Curse in Statistical Estimation

Suppose we have a dataset with D variables, and we suppose that the first one is dependent
on the others, through a model of the form.

Xi,1 = f(Xi,2, ..., Xi,D) + noisei.

Suppose that f is of unknown form, for example, we are not willing to specify a specific
model for f , such as a linear model. Instead, we are willing to assume merely that f is a
Lipschitz function of these variables and that noisei variables are in fact i.i.d. Gaussian
with mean 0 and variance 1 .

How does the accuracy of estimation depend on N , the number of observations in our
dataset? Let F be the functional class of all functions f which are Lipschitz on [0, 1]d. A
now-standard calculation in minimax decision theory [30] shows that for any estimator f̂
of any kind, we have

sup
f∈F

E(f̂ − f(x))2 ≥ Const · N−2/(2+D), n → ∞.

This lower bound is nonasymptotic. How much data do we need in order to obtain an
estimate of f accurate to within ε = .1? using minimax decision theory gives us a way to
answer this, and we obtain that trillions of samples are required.

The very slow rate of convergence in high dimensions is the ugly head of the curse of
dimensionality.

7 Blessings of Dimensionality

Increases in dimensionality can often helpful to mathematical analysis. Typically, this is
because of probability theory. The regularity of having many “identical” dimensions over
which one can “average” is a fundamental tool.

7.1 Concentration of Measure

The “concentration of measure phenomenon” is a terminology introduced by V. Milman
for a pervasive fact about probabilities on product spaces in high dimensions. Suppose we
have a Lipschitz function f on the D-dimensional sphere. Place a uniform measure P on
the sphere, and let X be a random variable distributed P Then

P{|f(x) − Ef(x)| > t} ≤ C1 exp(−C2t
2). (3)

where Ci are constants independent of f and of dimension. In short, a Lipschitz function
is nearly constant. But even more importantly: the tails behave at worst like a scalar
Gaussian random variable with absolutely controlled mean and variance.
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This phenomenon is by no means restricted to the simple sphere case just mentioned. It
is also true, in parallel form, for X taken from the multivariate Gaussian law with density

p(x) = (2π)−D/2 exp(−‖x‖2/2).

Variants of this phenomenon are known for many high-dimensional situations; e.g. discrete
hypercubes ZD

2 and hamming distance. The roots are quite old: they go back to the
isoperimetric problem of classical times. Milman credits the probabilist Paul Lévy with the
first modern general recognition of the phenomenon. There is by now a vast literature on
this

A typical example is the following. Suppose I take the maximum of D i.i.d. Gaussian
random variables X1, . . . , XD. As the maximum is a Lipschitz functional, we know from
the concentration of measure principle that the distribution of the maximum behaves no
worse than a standard normal distribution in the tails. By other arguments, we can see
that the expected value of max(X1, ..., XD) is less than

√
2 log(D). Hence the chance that

this maximum exceeds
√

2 log(D) + t decays very rapidly in t.
Another example is the following. Suppose I take the root-mean-square of D i.i.d. Gaus-

sian random variables X1, . . . , XD, or in simpler terms, the euclidean norm of the vector
X = (X1, ..., XD). As the norm is a Lipschitz functional, we know from the concentration
of measure principle that again the distribution of the maximum behaves no worse than a
standard normal distribution in the tails. By other arguments, we can see that the expected
value of ||X||2 is D, so the expected value of ‖X‖ is less than

√
D. Hence the chance that

this norm exceeds
√

D + t decays very rapidly in t.

7.2 Dimension Asymptotics

A second phenomenon, well-exploited in analysis, is the existence of results obtained by
letting the number of dimension go to infinity. This is often a kind of refinement of the con-
centration of measure phenomenon, because often when there is a dimension-free bound like
the concentration of measure phenomenon, there is a limit distribution for the underlying
quantity, for example a normal distribution.

Return to the example of the maximum MD of D i.i.d. Gaussian random variables. As
remarked above, we know that the distribution of the maximum behaves no worse than a
standard normal distribution in the tails. In fact, long ago Fisher and Tippett derived the
limiting distribution, now called the extreme-value distribution []. That is, they showed
that

Prob{MD −
√

2 log(D) > t} → G(t)

where G(t) = e−e−t
.

Similarly, return to the example of the Euclidean norm ND of D i.i.d. Gaussian random
variables. Owing to the known properties of χ distributions,

Prob{ND −
√

D > t} → Φ(t)

where Φ(t) is the standard Normal cumulative distribution function.

7.3 Approach to Continuum

Many times we have high-dimensional data because the underlying objects are really
continuous-space or continuous-time phenomena: there is an underlying curve or image that
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we are sampling. Typical examples cited earlier include measurements of spectra, gaits, and
images. Since the measured curves are continuous, there is a underlying compactness to
the space of observed data which will be reflected by an approximate finite-dimensionality
and an increasing simplicity of analysis for large D.

A classical example of this is as follows. Suppose we have d equispaced samples on
an underlying curve B(t) on the interval [0, 1] which is a Brownian bridge. We have D-
dimensional data Xi,D = B(i/D), and discuss two computations where the large d behavior
is easy to spot.

First, suppose we are interested in the maximum maxi Xi,D. Then quite obviously, this
tends, for large D to the random variable maxt∈[0,1] B(t), which has an exact distribution
worked out by Kolmogorov and Smirnov.

Second, suppose we are interested in obtaining the principal components of the random
vector. This involves taking the covariance matrix

Ci,j = Cov(Xi, Xj), 1 ≤ i, j ≤ D

and performing an eigenanalysis. On the other hand, the covariance kernel

Γ(s, t) = Cov(B(s), B(t)), s, t ∈ [0, 1]

has the known form min(s, t) − ts and known eigenfunctions sin(πkt), for k = 1, 2, . . ..
In this case, the first m eigenvalues of C tend in an appropriate sense to the first m

eigenvalues of Γ and the eigenvectors of C are simply sampled sinusoids.

8 Exploiting the Blessings

We now give examples of how each of these blessings comes up in high-dimensional data
analysis.

8.1 Model Selection

We begin with an example exploiting the concentration of measure phenomenon.
Suppose we have a linear regression problem, where there is a dependent variable Xi,1

which we want to model as a linear function of Xi,2, ..., Xi,D as in (1).
However, D is very large, and let’s suppose we’re in a situation where there are thought

to be only a few relevant variables, we just don’t know which ones. If we leave many
irrelevant variables in the model, we can easily get very poor performance. For this reason,
statisticians have, for a long time, considered model selection by searching among subsets
of the possible explanatory variables, trying to find just a few variables among the many
which will adequately explain the dependent variable. The history of this approach goes
back to the early 1960’s when computers began to be used for data analysis and automatic
variable selection became a distinct possibility.

We have to be on guard to the problem of what was classically called data mining –
over-optimistic assessments derived by searching through noise and fooling ourselves that
we have found structure.

One approach, used since the 1970’s, is to optimize over subset models the complexity
penalized form

min RSS(Model) + λModel Complexity,
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where RSS denotes the residual sum of squares of the residuals Xi,1 − Modeli,1, and the
model complexity is the number of variables Xi,2, . . . , Xi,D used in forming the model.
Early formulations used λ = 2 · σ2, where σ2 is the assumed variance of the noise in (1).
The overall idea is to impose a cost on large complex models.

More recently, one sees proposals of the form λ = 2 ·σ2 · log(D). With these logarithmic
penalties, one takes into account in an appropriate way the true effects of searching for
variables to be included among many variables. A variety of results indicated that this
form of logarithmic penalty is both necessary and sufficient, for a survey see [31]. That is,
with this logarithmic penalty, one can mine one’s data to one’s taste, while controlling the
risk of finding spurious structure.

The form of the logarithmic penalty is quite fortunate. The logarithm increase quite
slowly with D – a faster increase would indicate that automatic variable selection is in
general hopeless: one loses too much by searching for the right variables. And, interestingly,
the logarithm is directly due to the concentration of measure phenomenon. That is to say,
the presence of the exponential decay in the concentration of measure estimates (3) is
ultimately responsible for the logarithmic form of the penalty.

8.2 Asymptotics for Principal Components

We now turn to an example of our second “blessing of dimensionality” – that results for
high dimensions can be easier to derive than for moderate dimensions.

Now suppose we have data Xi,j where the vectors X(i) = (Xi,j : 1 ≤ j ≤ D) are assumed
samples from a Gaussian distribution with mean zero and covariance Γ. We are interested
in knowing whether Γ = I as compared to Γ �= I. Depending on our alternative hypothesis,
it might be very natural to rephrase our question as λ1 = 1 versus λ1 > 1, where λ1 is the
top eigenvalue of the covariance matrix. It then becomes natural to develop a test based on
l1, the top eigenvalue of the empirical covariance matrix C = N−1X ′X. it then becomes
important to know the null distribution of l1. Exact formulas go back to work by Ted
Anderson of Stanford of the 1950’s published in Anderson (1963), but are not very useful
in the setting we consider; they cover the D fixed N → ∞ case. Already for moderate D,
and N proportional to D one cannot really apply them.

Suppose instead we are in a setting of many observations and many variables. What
is the behavior of the top eigenvalue of CD,N? Consider a sequence of problems where
D/N → β – large dimension, large sample size.

This is a problem which has been studied for decades; see [32] for references. Classical
results in random matrix theory – in the spirit of the Wigner semicircle law – study infinite
matrices, and in accord with our “second blessing of dimensionality”, give information
about the bulk spectrum of C; but unfortunately they do not accurately predict the very
top eigenvalue.

Recently, Tracy and Widom have made very substantial innovations in the study of the
topmost eigenvalues of certain ensembles of infinite random matrices – so called Gaussian
Unitary and Orthogonal Ensembles. Iain Johnstone recognized that this work had appli-
cations in a statistical setting, and building also on the work of Kurt Johansson has been
able to obtain asymptotic results for the top eigenvalue of CD,N in the so-called null case
– results which are relatively easy to apply in practice.

Moreover, empirical studies show that the results, though derived asymptotically, are
in fact useful for d as small as 5. Hence we obtain, from a high-dimensional analysis, useful
results in moderate dimensions.
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8.3 Fourth-Order Structure of Stochastic Processes

We now consider an example of our third blessing of dimensionality – how in a setting
where the data are curves, continuum theory may furnish an interpretation of the results.

Consider a collection of underlying functions f(t, ω) defined on the index set T ≡ [0, 1],
with parameter ω chosen from [0, 1], defined by

f(t;ω) =

{
t t < ω
t − 1 t ≥ ω

Each curve very simple behavior: it jumps down by 1 at the jump time ω; otherwise it just
increases at unit slope. It is a model of a singularity occurring at any of a range of times.

Consider a simple numerical experiment. With N = D = 32 we define vectors Yi,
i = 1, ..., D, each one a simple digitization of Ramp.

Yi(t) = f(t/n, i/n), 1 ≤ t ≤ N ; 1 ≤ i ≤ D.

The database Y thus consists of 32 signal patches, and we use this database as input to
the so-called JADE procedure. That is, we calculate from this data the empirical (32)4

cumulant tensor, and we use JADE to attempt a diagonalization of this tensor. The result
will be an orthonormal basis with 32 elements depicted in a Figure to be shown in the talk.
The structure of the basis is rather remarkable; it has many of the features of a wavelet
basis.

• Dyadic Scales. The elements seem visually to posses a variety of scales; they can be
arranged in a dyadic pyramid, with 16 elements at the finest scale, 8 elements at the
next finest scale, and so on.

• Translations. Within one scale, the elements seem to be approximately translates of
each other, so that (at fine scales particularly) there are elements located roughly at
positions tj,k = k/2j .

• Cancelation. The elements at fine scales seem to be oscillatory, with two vanishing
moments.

In my Talk I will present a Figure showing a Daubechies nearly-symmetric basis with 6
vanishing moments. Another Figure will gives a few side-by-side comparisons between
these “JADElets” and certain Daubechies nearly-symmetric wavelets. The reader may
notice a striking resemblance.

In short, instead of the almost-diagonalizing basis being arbitrary, it resembles wavelets,
an object from the continuum theory. Presumably, this resemblance becomes stronger with
large D, and so the interpretation becomes increasingly simple. If so, we are blessed by the
approach to an underlying continuum model.

9 Predictions

At this point, I hope to have convinced the reader of three major intellectual and societal
trends:

• The Ubiquity of Data

• The Importance of Data Analysis
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• The Pervasiveness of High-Dimensionality

I believe that the future of data analysis is now in the hands of those who would explore
the high-dimensional situation, facing the situation as it stands now, at the turn of the
century.

I hope also to have made clear the basic aspects of the high-dimensional situation

• Three aspects of the curse of dimensionality

• Three blessings of dimensionality

The occasion seems to demand that at this point I “deliver the goods”: that I state
some number of open problems (23?), leaving open to future generations to solve. I think
this would be really foolhardy on my part.

Instead, I will mention some different directions in which I expect to see much further
progress...

9.1 High-Dimensional Approximate Linear Algebra

9.1.1 Approximations through Randomness

Modern computational linear algebra is a great success story. It is currently used to solve
massive data processing problems - fitting gigantic models, scheduling fleets of airliners,

Nevertheless, in a certain sense it is slow. Inverting a matrix takes O(N3) operations,
which for large N (say in the millions) is prohibitively expensive. The Strassen algorithm
reduces this to N s with s about 2.7, but that is still heavy. Hence, we are entitled to dream
that these fundamental components can be sped-up.

I will mention two recent articles that give an idea that something can be done
Owen [48] considered the problem of determining if a dataset satisfied an approximate

linear relation of the form (1). With N > D observations, the usual method of assessing
linearity would require order ND3 operations, which could be a computationally heavy
burden for D large. Instead, Owen shows how to use randomized algorithms to assess
linearity in order N2/3 operations.

Frieze, Kannan, and Vempala [20] considered the problem of obtaining a rank k approx-
imation to a data matrix X of size N by D. With N > D observations, the usual method
of singular value decomposition would require order ND3 operations, which could again
be a computationally heavy burden for D large. Instead, Frieze, Kannan, and Vempala
show how to use randomized algorithms to obtain an approximate description of the rank
k approximation in a number of operations independent of N and D, and polynomial in k
and in the error tolerances.

In these cases, it is the phenomenon of concentration of measure that we are exploiting.
However, in the cited papers, we are using only the most elementary form of the phe-
nomenon. With the growing importance of massive databases, results like these seem to be
increasingly pertinent and attractive. Supposing that these develop as I expect, increasingly
sophisticated versions of concentration of measure would develop and be applied.

9.1.2 Approximation through Computational Harmonic Analysis

There is a different sense in the term approximate linear algebra that seems destined to
become important. This derives from our third blessing: approach to the continuum.
In recent years, the discipline of computational harmonic analysis has developed large
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collections of bases and frames such as wavelets, wavelet packets, cosine packets, Wilson
bases, brushlets, and so on [16, 39]. As we have seen, in two cases, that a basis being sought
numerically by a procedure like principal components analysis or independent components
analysis, will resemble some previously-known basis deriving from continuum theory. We
saw, in fact, that the covariance of a stationary process is almost diagonalized by the
Fourier basis, and that the fourth cumulant tensor of a process with discontinuities is
almost diagonalized by the Wavelet basis.

There are numerous other examples where a fixed basis known in harmonic analysis does
as well as a general procedure. The article [17] shows that in recognizing facial gestures,
the Gabor basis gives better classification than techniques based on general multivariate
analysis – such as Fisher scores and Principal component scores.

The expectation one can develop from such evidence is that when the data are curves or
images, instead of using methods which search for an arbitrary basis or subspace, we should
look for it in a pre-constructed set. There is a good statistical reason for this. In effect,
a basis can be a hard thing to estimate well – there is substantial statistical uncertainty
even when N is large. If we discover that a certain known basis is almost diagonalizing,
we might use that basis, acting as if it were exactly diagonalizing, and avoiding thereby a
substantial component of estimation error.

In an extreme case, this is easy to see. Suppose we have a dataset with N = 1 and
D very large. Ordinarily, in this high-dimensional case we can do nothing: we have 1
observation! But if the data are obtained from one realization of a stationary Gaussian
stochastic process, we can in fact do something: we have all the apparatus of modern time
series analysis at our disposal, and we can indeed estimate the spectrum, and learn the full
probability distribution. In effect, spectrum estimation is relying heavily on the fact that
we know the covariance to be almost diagonal in the Fourier basis.

The article [40] develops a full machinery based on this insight. A dataset is analyzed
to see which out of a massive library of bases comes closest to diagonalizing its empirical
covariance, the best basis in the library is constructed, and the data are processed using
that basis.

9.2 High Dimensional Approximation Theory

We now consider the curse of dimensionality itself, and re-examine the basic phenomenon
mentioned earlier.

The key assumption that makes it hard to approximate a function of D-variables is
that f may be an arbitrary Lipschitz function. With different assumptions, we could
have entirely different results. Perhaps there is a whole different set of notions of high-
dimensional approximation theory, where we make different regularity assumptions and get
very different picture.

This point is underlined by a result of Andrew Barron [1]. Let FL1 denote the collection
of functions with Fourier transforms in L1. Consider the class F of functions of RD with

∇f ∈ FL1. (4)

Normally, in approximation results, one expects that objects of smoothness s can be ap-
proximated at rate n−s/D by n-term approximations (e.g. polynomial, trigonometric, ...).

Apparently, (4) is a condition on the first derivative of f . Hence one expects that
the condition (4) leads to an approximation rate O(n−1/D), which is very bad in high
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dimensions. In fact Barron showed that functions of this type can be approximated at rate
O(n−1/2) independent of dimension.

This result made quite an impression, and was paraphrased by many as saying that
Barron had “cracked the curse of dimensionality”. In fact, now the phenomenon is better
understood, and we know that there are many functional classes which allow one to evade
the curse of dimensionality.

The phenomenon is easy to understand using ideas and terminology from harmonic
analysis. Consider the class of functions F(M) representable integral representation f =∫

A(x; t)µ(dt) with
∫
|µ(dt)| ≤ M where each A(·; t) is a bounded functions bounded by 1.

We call this an L1 combination of L∞ atoms. Then owing to a simple soft argument dating
back to B. Maurey in geometry of Banach spaces and S.B. Stechkin in Fourier analysis,
there is an m-term sum fm =

∑
j ajA(;̇tj) with sup-norm error |f − fm|∞ ≤ C · m−1/2.

Niyogi and Girosi [46] have pointed out that if we consider the set F(m,Gaussians)
generated with parameter t = (x0, s) and A(x; t) = exp(−‖x − x0‖2/s2), so that f is a
superposition of gaussian bumps, then we equivalently avoid the curse of dimensionality by
using the Radial Basis function approximation scheme. The condition is that the sum of
the heights of all the bumps is at most a constant M , with no restriction whatever on the
width or position of the bumps.

Another charming example is F(M, Orthants) uses the parameter set of shifted orthants.
We let t = (x0, k) where k is an orthant indicator, and let A(x; t) be the indicator of orthant
k with apex at x0. Then again, if the integral is at most M we obtain an approximation
rate O(m−1/2) independent of dimension. An example of a function satisfying the condition
is a cumulative distribution function in RD – in which case the result is well known under
the guise of the monte-carlo method. More generally, consider any superposition of 2D

functions, each orthantwise monotone for a different orthant.
We can easily see derive equivalent conditions. For example, the class of superpo-

sitions of Gaussian bumps studied by Niyogi and Girosi is simple Yves Meyer’s bump
algebra [43]; this corresponds to a ball in a Besov space BD

1,1(R
D), so that the functions

in F(M, Gaussians) are getting increasingly smooth in high dimensions [23, 43]. In short,
one does not really crack the curse of dimensionality in Barron’s sense; one simply works
with changing amounts of smoothness in different dimensions. The ratio S/D between the
smoothness degree and the dimension stays constant, and hence the N−S/D result does not
become punishing.

Similarly, for the shifted orthants example, the condition of integral representation with∫
|µ(dt)| ≤ 1 is the same as the condition that the mixed derivative

∂

∂x1
· · · ∂

∂xD
f ∈ L1. (5)

In analogy to D = 1 where this reduces essentially to bounded variation, we might call this
a condition of bounded mixed variation. The functions in the relevant set F(M, Orthants)
are getting increasingly smooth in high dimensions. One does not really conquer the curse
of dimensionality; one simply works with changing amounts of smoothness in different
dimensions.

Or perhaps we should reconsider this assessment. The functions in F(M,Gaussians) are
minimally continuous; the functions in F(M, Orthants) are not even continuous. In each
case, the usual ways of measuring smoothness suggest that functions in these classes have D
weak derivatives. It would be more intuitive had this calculation turned out differently, and
we agreed that these functions don’t have many derivatives. Perhaps we need a different
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way to measure degree of differentiability, in which discontinuous functions are not claimed
to possess large numbers of derivatives.

R.R. Coifman and J.O. Stromberg [12] have gone in exactly this direction. Viewing the
condition of bounded mixed variation as a natural low order smoothness condition, they
have explored its consequences. Roughly speaking, functions obeying the BMV condition
have the character that they are built up from indicators of dyadic rectangles, that very few
rectangles are needed, that the ones which are needed tend be very long in all directions
except for one. In effect, locally the function varies only in a single direction at most x, and
so it becomes understandable that it can be estimated at a rate essentially independent of
dimension.

The argument for studying approximation theory for spaces of mixed variation then
becomes:

• The smoothness condition is in fact weak.

• The class of functions obeying the condition are in fact quite interesting.

• The algorithm obtaining the estimation rate is new and interesting.

These brief remarks may suggest to the reader that substantial opportunities for inter-
esting results over the coming years in high-dimensional approximations.

10 Some Personal Experiences

Why does it make sense to take time on the program at a major mathematical meeting
to discuss data analysis? Ultimately, the answer is a personal one: from my own research
experiences, I have found that by understanding what is happening in the field of data
analysis, one poses interesting questions in mathematics per se. Extrapolating from my
own experience suggests this may hold more broadly.

10.1 Interpretation of High-Dimensional Data Analysis

As high-dimensional data analysis progresses to settings where the data are images or
curves, we have predicted above that there will be a substantial role for harmonic analysis
to understand and interpret the results. But sometimes, the results will not be known in
harmonic analysis, and the interpretation may even call for new constructions in harmonic
analysis.

As an example, consider the following sort of image analysis problem which has attracted
a great deal of attention recently.

We gather naturally-occurring images, extract image patches, assign unravel each patch
to become a row of our data array, and create a data array with the image patches embedded
in it. We then perform independent components analysis or sparse components analysis.

The result will be a basis of imagelets (2-d image patches) or movielets (if we were
analyzing 3-d image patches). Interesting examples of this work include work by Olshausen
and Field [47], Bell and Sejnowski [2] van Hateren and Ruderman [25], and Donato et al.
[17].

Recall that principal components of image data typically produce sinusoidal patterns.
ICA in contrast, typically produces basis functions unlike classical bases.

In the talk I will present an example of a movie created by van Hateren and Ruderman.
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In these cases, because the data are images, we may expect that the result of high-
dimensional data analysis – a basis – should be a basis which corresponds to a basis for the
continuum. (Recall our earlier examples of this).

The sought-for continuum basis would consist of anisotropic elements at a range of
scales, locations, orientations, and length/width relations. These properties are not avail-
able from classical constructions, such as wavelets.

In short, it seems as if one can discover phenomena by high-dimensional data analysis
which ought to have been built by harmonic analysts, but which were not.

At the moment, it appears that these empirical results can best be explained in terms
of two recent systems.

• Ridgelets [8]. One can build a frame or a basis consisting of highly directional ele-
ments, roughly speaking ridge functions with a wavelet profile. With a and b scalars
and u a unit vector (direction) the simplest ridgelets take the form

ρ(x; a, b, u) = ψ((u′x − b)/a)/a1/2.

• Curvelets [9]. One can build a frame consisting of highly directional elements, where
the width and length are in relation width = length2. The construction is a kind of
elaborate multiresolution deployment of ridgelets.

These new systems of harmonic analysis offer a series of interesting mathematical op-
portunities – for example in the analysis of singularities along curves [10]. They also stand
in interesting contrast to existing tools of microlocal analysis such as the tool Eli Stein calls
“Second Dyadic Decomposition”.

In general there is good reason to expect high-dimensional data analysis in th efuture
to offer challenges to harmonic analysis. Both are concerned with finding almost-diagonal
representations of operators. However the operators that arise in data analysis are con-
tinuously changing, and new phenomena can arise each time a new kind of sensor or data
source comes on line. Hence, interpretation of the results of data analysis may continually
suggest new schemes of harmonic analysis.

10.2 Geometric Structures in Low-Dimensional Data Analysis

One reason that high-dimensional data analysis should be mentioned at this conference is
that in fact we know so little. At recent rates of progress, there is more than enough work
to last through the coming century.

My evidence for this belief comes from our meager understanding of data representation
even in two and three dimensions.

In my Talk I will give a few figures illustrating the problem of detecting Filaments in
noisy data. This problem is of current interest because of the imminent arrival of data from
the XMM satellite observatory, which will shed light on inhomogeneities in the distribution
of matter at the very earliest detectable moments in the universe [19, 52].

I hope also to present figures from work by Arne Stoschek, illustrating the problem of
recovering filamentary structure in 3-D biological data.

A third set of figures may suggest the problem of finding a curve embedded in extremely
noisy data.

These problems suggest the relevance of work in harmonic analysis by Peter Jones [33]
and later by Guy David and Stephen Semmes [14].
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Jones’ traveling salesman theorem considers the problem: given a discrete set S of points
in [0, 1]2, when is there a rectifiable curve passing through the points? His theorem says
that this can be decided solely on the basis of certain local functionals. If we let Q denote
a dyadic subsquare of [0, 1]2, and define tQ to be the thickness of the thinnest parallel strip
containing all the points in the dilate S ∩ 3Q, then defining βQ = tQ/?(Q), where ? is the
sidelength of Q. This is a measure of how anisotropic the set S is at the scale ?(Q) – a sort
of width/length ratio. If the set lies on a curve, this could be very small. Jones proved that
the finiteness of the sum

∑
β(Q)2?(Q)2 controls the existence of a rectifiable curve.

David and Semmes have studied the problem of approximations in RD by k-dimensional
varieties, and have developed machinery for this case which specializes to yield the original
Jones result.

In view of the importance for data analysis of k-dimensional linear approximation in
RD – this is, after all, the problem of principal components analysis – it seems possible
that these tools will one day be routinely applied not just in analysis but also in high-
dimensional data analysis. The Yale thesis of Gilad Lerman, under the direction of Jones
and R.R. Coifman, has made an auspicious start in that direction.

In recent work with Xiaoming Huo, I have been developing some computational tools
which are related to this work. We define the Beamlets a dyadic multiresolution family of
line segments, the beamlet graph, and beamlet transform – the family of line integrals along
beamlets. The idea is to gather data over a special family of line segments. We develop
beamlet-based algorithms for finding filaments in noisy data and recognizing objects with
curved boundaries in noisy data. In the Talk, I will show figures of some preliminary results.

In work with Ofer Levi, we have made preliminary efforts with beamlets in R3, which
is of obvious interest for structural biology and medical imaging. In the Talk, I will show
figures of some of these.

It seems to me that we are just at the beginning stages of having tools for characterizing
data around geometric structures in 2- and 3- dimensions. Modern data analysis has an
urgent need for more tools, and I suspect that modern harmonic analysis can make progress
and be a major contributor in that effort.

11 Conclusion

One of Tukey’s implicit points was that data analysis would often be a relatively elemen-
tary activity, for example conducted by hand, as in the stem-and-leaf plots and boxplots
developed in his book Exploratory Data Analysis.

Surely this is an eccentric position for Tukey to have invested with so much time and
energy. Tukey was one of the nation’s leading intellectuals; the President of Princeton in the
1970’s, William F. Bowen, once told me that he regarded Tukey as a “National Treasure”.
I suspect that Tukey felt it was important to develop stem-and-leaf and similar ideas partly
because the utter simplicity of the ideas would underscore the separation between data
analysis and mathematics.

This aspect of Tukey’s position has dated the most rapidly. Data analysis today is not an
unsophisticated activity carried out by hand; it is much more ambitious, and, in my opinion,
an intellectual force to be reckoned with. The examples of Olshausen and Field and van
Hateren and Ruderman shows that in fact data analysis is now producing quite sophisticated
objects – bases for high-dimensional spaces with rich and mathematically unprecedented
structure. These objects are complex enough to provide challenges to mathematicians –
“Why doesn’t mathematics currently provide a good language for describing what I am
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seeing in my experiments?” and “Can’t you formally develop systems of harmonic analysis
which look like this?” I was quite elated when I encountered this work; it revealed to me
that data analysis has now reached a point of sophistication where it can challenge and
enrich mathematical discourse.

In 1900 Hilbert closed his paper with the question of whether Mathematics would have
a schism:

... the question is urged upon us whether mathematics is doomed to the
fate of those other sciences that have split up into separate branches, whose
representatives scarcely understand one another and whose connection becomes
ever more loose.

In fact we have seen in the past century exactly the sort of schism Hilbert worried about,
and our talk today gives an example of a schismatic movement.

In Hilbert’s closing, he asserted that Mathematics could avoid schism, saying

...the farther a mathematical theory is developed ... unexpected relations
are disclosed between hitherto separate branches of the science ... its organic
character is not lost but only manifests itself with clarity.

My personal research experiences, cited above, convince me of Hilbert’s position, as a
long run proposition, operating on the scale of centuries rather than decades.
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