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Introduction

In 1924, S. Banach and A. Tarski proved a truly remarkable theorem: given

a solid ball in R3, it is possible to partition it into finitely many pieces and

reassemble them to form two solid balls, each identical in size to the first.

At first such a duplication seems patently impossible. However, a mo-

ment’s reflection reminds us that the mathematical world doesn’t always obey

intuition.

The intention of this paper is to provide a self-contained exposition of the

proof of the Banach-Tarski Paradox and to introduce related topics. We will

show, in fact, that the minimal number of pieces in the paradoxical decom-

position is five, and prove the stronger form of the Banach-Tarski Paradox :

that any two bounded subsets of the plane with non-empty interior are such

that one can be “cut” into a finite number of pieces and reassembled to form

the other!

Most of the material we will cover is presented in [W], and we shall follow it

closely. However, we shall be less ambitious in overall scope and more mindful

of continuity of theme. In some places we will provide slightly modified proofs.

If anything, the author’s hope is that this paper also gives the reader an inkling

of how to motivate the results presented herein.

The Axiom of Choice, it will be noted, is indispensable to the proof of the

Banach-Tarski paradox. However, as we shall very soon see, there are striking

paradoxes which do not use Choice. Hence, the philosophy adopted in ths

paper will be the unquestioned acceptance of Choice as a useful foundation in

our work, so we will not bow to the pressure to acknowledge which results do

or do not depend on the Axiom of Choice.

The reader, it will be assumed, has had a course in abstract algebra and
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the rudiments of measure theory and analysis. Nevertheless, we establish some

terminology: Gn will denote the isometry group of Rn, and SOn will denote

the group of rotations of Rn. A semigroup is a set with an associative binary

operation and an identity. A choice set for a collection of sets (which exists

by the Axiom of Choice) will be a set obtained by picking one element from

each set in the collection.

Paradoxical Decompositions

Before we set out to prove the Banach-Tarski Paradox , we shall inves-

tigate somewhat simpler paradoxes to understand and motivate the kinds of

approaches that might be brought to bear on proving theorems of this sort.

One of the earliest paradoxes arose out of grappling with the notion of

infinity. The set of integers can be put in 1-1 correspondence with all integers,

for instance. This seems strange, at first: if set bijections are interpreted as

“equality” in some sense, then Z is “equal” to a subset of itself. In fact, Z

may be partitioned into two sets (even and odd integers), each “equal” to all

of Z. G. Cantor worked with this idea, and developed a theory of cardinality

which mathematicians today have few problems understanding or accepting

as “intuitive”.

Because of this theory, we know that the “number” of points in an interval

is the same as the “number” of points in a square. We cannot be too surprised

by this, after all, because we have allowed our points to move where they

wish as independent “pieces” in our decomposition. Or consider “stretching”

[0, 1) — so the number of points in [0, 1) is equal to that in [0, 2), which we

can see using the bijection f(x) = 2x. Again the familiar paradox emerges:
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[0, 2) = [0, 1) ∪ [1, 2), the union of two sets each of which is “equal” to the

original by a “stretching” bijection. But we are not very shocked that we can

stretch [0, 1) to get [0, 2).

However, when we restrict the number of pieces to be finite and the allow-

able transformations to be isometries of the ambient space, any paradox that

persists is hightly counterintuitive.

Notice that the previous paradoxes depended on the set of allowable trans-

formations. Hence we shall demand that our definition of paradoxical be de-

pendent on a group whose action on the set produces the transformations.

Definition 1 Let G be a group acting on a set X and suppose E ⊆ X. E is

said to be G-paradoxical if for some m,n there exist g1, ..., gm and h1, ..., hn ∈

G and pairwise disjoint A1, ..., Am and B1, ..., Bn ⊆ E such that E = ∪gi(Ai) =

∪hj(Bj).

When the isometry group is omitted, we understand it to be the isometry

group of X. Note that in our definition, {Ai} ∪ {Bi} may not cover all of E,

and the {gi(Ai)} (or {hi(Bj)}) may not be pairwise disjoint. This distinction

is artificial, however, because we may take the Ai, Bj to be smaller to ensure

the pairwise disjointness, and we will prove later that we can use all of E in

the decomposition.

Theorem 1 (The Banach-Tarski Paradox) Any ball in R3 is paradoxical.

Paradoxes first emerged in the study of measures. In fact, they were con-

structed to show the non-existence of certain kinds of measures, such as in the

following example.

Theorem 2 S1 is countably SO2-paradoxical (i.e., paradoxical with a count-

able number of pieces).
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Proof. Consider the RSO2, the subgroup of SO2 generated rotations

of rational multiples of 2π radians. Let H be a choice set for the cosets of

SO2/RSO2. Now let M = {σ(1, 0) : σ ∈ H}.

Since RSO2 is countable, we may enumerate it by ρi. Let Mi = ρi(M).

Then {Mi} is a countable partition of S1, and moreover, all the Mi are con-

gruent to each other by rotation.

Hence, each set in {M2,M4,M6, ...} may be individually rotated (say, by

g2i) to yield {M1,M2,M3, ...} whose union is S1. We can clearly do the same

for {Mi : i odd}. Thus S1 is countably SO2-paradoxical.

Q.E.D.

Corollary 2.1 There is no countably additive rotation-invariant measure of

total measure 1 defined for all subsets of S1.

Proof. If there were, then, in the proof above, for A = union of the even-

indexed Mi, and B = union of odd-indexed Mi, we would have: 1 = µ(S1) =

µ(A) + µ(B) = µ(S1) + µ(S1) = 2.

Corollary 2.2 There is no countably additive, translation-invariant measure

defined on all subsets of Rn and normalizing [0, 1]n. Hence, there is a subset

of [0, 1] which is not Lebesgue-measurable.

Proof. It suffices to show such a measure does not exist for R1, for any

such measure µ′ in Rn would induce a measure µ in R1 by µ(A) = µ′(A ×

[0, 1]n−1).

But for µ on R1, its restriction to subsets of [0, 1) would be invariant under

G =translations mod 1 and defined on all subsets. Since SO2’s action on S1

is isomorphic to G’s action on [0, 1) by the bijection j : (cos θ, sin θ) → θ/2π,

we see that [0, 1) is G-paradoxical, which is a contradiction.
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One non-Lebesgue-measurable subset [0,1] is j(M), for j as above, and M

as in the proof of the theorem.

Q.E.D.

Equidecomposability

The next example we shall discuss is not quite a paradox in the technical

sense, but it is rather interesting and will be of use to us later. We shall

show that a broken circle (S1 \ {pt}) can be partitioned into two sets, and

reassembled to form a complete circle.

First we need some language to describe this.

Definition 2 Let G act on a set X, and let A,B ⊆ X. A and B are said to

be G-equidecomposable if A and B can be partitioned into A1, ..., An and

B1, ..., Bn such that each Ai is congruent to Bi (there is a gi ∈ G such that

gi(Ai) = Bi).

We write A ∼G B, or A ∼ B.

This means that A can be partitioned into a finite number of subsets and

reassembled to form B. This is easily seen to be an equivalence relation.

Moreover, we see that if A ∼ B and A is paradoxical, so is B.

Theorem 3 S1 \ {pt} is equidecomposable to S1.

By omission of the group we understand it to be the isometry group of R2,

and we identify S1 with {x : |x| = 1}.

Proof. Consider R2 identified with C, the complex plane. Let the pt

be 1 = ei0. Let A = {ein : n ∈ {1, 2, 3, ...}}, and let B = (S1 \ {pt}) \ A

be everything else. The points ein are unique, since 2π is irrational. Then,
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leaving B fixed, rotate A by 1 radian— i.e., use the isometry ρ(z) = e−iz. This

rotation sends each point “back” one radian, by which we obtain a complete

circle.

Q.E.D.

The above construction gives us an interesting idea for the construction of

paradoxes. Here we considered the image of a point under the subsemigroup

generated by ρ (that is, only positive rotations). Because the semigroup was

free, we could use the inverse rotation (obtained from the group containing

this semigroup) to “shift” everything back.

In fact, this idea forms the basis of the following:

Theorem 4 (Sierpiński-Mazurkiewicz Paradox ) There exists a subset

of R2 which is paradoxical.

Proof. We can actually explicitly say what that subset is, namely

E = {a0 + a1e
iθ + a2e

2iθ + ...+ ane
niθ : n, aj ∈ N}

for any θ where eiθ is transcendental. (In particular, θ = 1 works.)

Our aim is to identify two isometries τ , ρ which generate a subsemigroup S

of the isometry group G2 of the plane (considered as C). Then we shall choose

a point x in the plane and consider E = {w(x) : w ∈ S}, all the images of this

point under words in S.

If for all a, b ∈ E, τ(a) 6= ρ(b), then we would see that E is paradoxical, for

then τ(E) ∩ ρ(E) = ∅, and so τ−1(τ(E)) = ρ−1(ρ(E)) = E.

So choose ρ(z) = rz, where r = eiθ is a transendental complex number.

Such a θ exists, since there are only countably many algebraic numbers on the
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unit circle. Now choose τ(z) = z + 1. These are both isometries of the plane.

Let x = 0.

Then for any two words w1, w2 ∈ S, we shall show that τ(w1(0)) 6=

ρ(w2(0)), which will show that the words themselves are not equal.

But it is easy to verify that τ(w1(0)) 6= ρ(w2(0)) by explicitly writing

out both sides of the equation as a polynomial in r, and observing that if

they were equal, their difference produces a non-trivial algebraic relation for

r, contradicting the choice of r.

Q.E.D.

A few remarks are in order. Since the set E is countable, this theorem

says nothing surprising in terms of Lebesgue measure: 2(0)=0. And, since

the set has been explicitly defined, we have not used the Axiom of Choice

(which supports the view that Choice is not to blame for the phenomenon of

paradoxes).

Notice that from τ(w1(0)) 6= ρ(w2(0)) we can conclude that S is a free

subsemigroup, since if distinct reduced words w1, w2 are equal, then left can-

cellation will yield either ρ(w′1) = τ(w′2) (which must agree on 0, contradicting

assumption) or 1 = w′ (for which one of τ(0) = w′(τ(0)) or ρ(0) = w′(ρ(0))

contradicts the assumption). Hence, freeness seems to play a big role in pro-

ducing paradoxes, as we shall see in the next section.

An open question related to the Sierpiński-Mazurkiewicz Paradox is whether

any bounded subset of the plane is paradoxical. It is known that any such sub-

set cannot be paradoxical using two pieces.

We note that the three previous examples of paradoxes involved finding one

in a group or a subsemigroup and then in some manner “lifting” the paradox

to set on which it acts. Thus it is natural to study paradoxical groups, where

8



the group acts on itself by left multiplication.

Paradoxical Groups

The primary example of a paradoxical group is the free group on two gen-

erators (sometimes called a free group of rank 2). Recall that a free group F

on two generators a, b is the group of all finite words in a±1, b±1 with no ad-

jacent pairs of inverse letters, and the operation is juxtaposition with removal

of possibly any adjacent pairs of inverse letters.

Theorem 5 The free group F on two generators σ, τ is F -paradoxical.

Proof. Let B(ρ) = {words beginning on the left with ρ}, where ρ may be

σ, σ−1, τ, τ−1.

Then F = {1}∪B(σ)∪B(σ−1)∪B(τ)∪B(τ−1), where all sets are pairwise

disjoint.

But F = B(σ) ∪ σB(σ−1) and F = B(τ) ∪ τB(τ−1), which shows that F

is indeed paradoxical.

We can actually choose to partition F so that all four pieces in the para-

doxical decomposition cover F , i.e., {1} is included in one of the four sets. To

see this, put 1 in B(σ). Then we must remove σ−1 from B(σ−1) or else we

will duplicate 1 in σB(σ−1). Inductively we see that σ−n must be removed

from B(σ−1) so as not to duplicate σ−n+1. So let our new partition be the

same as the old one except for: B′(σ) = B(σ) ∪ {1} ∪ {σ−n : n ∈ N+}, and

B′(σ−1) = B(σ−1) \ {σ−n : n ∈ N+}. These sets satisfy the same relation

F = B′(σ) ∪ σB′(σ−1).

Q.E.D.
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To ensure that the paradox “lifts” to disjoint well-defined sets, we need a

condition on G’s action, namely, that no element but the identity fixes any

points of the set.

Theorem 6 Suppose G is a paradoxical group acting on X without nontrivial

fixed points. Then X is G-paradoxical.

Proof. Let Ai, Bj ⊆ G and gi, hj ∈ G be the sets and transformations

“witnessing” that G is paradoxical. Take a choice set M from the G-orbits in

X. Now {g(M) : g ∈ G} partitions X because G acts without nontrivial fixed

points.

Let A′i = ∪{g(M) : g ∈ Ai} and B′j = ∪{g(M) : g ∈ Bj}. Then {A′i} and

{B′j} are all pairwise disjoint, and we can see that X = ∪{A′i} = ∪{B′j}.

Q.E.D.

Notice that this idea was used in a subtle way in Theorem 2, where the

group acting on S1 wasRSO2, the orbits were the cosets of SO2/RSO2, and the

implicitly used paradox on RSO2 was that this countable group was transitive,

and so could be enumerated and decomposed into “even” and “odd” parts as

we did for the images of M in the proof of that theorem.

We are now faced with a very interesting question: which groups are para-

doxical? The answer to this lies in the investigation of groups bearing a finitely

additive measure of total measure 1, defined on all subsets, which is invariant

under left multiplication. Such groups are called amenable groups, it turns

out that they coincide precisely with the non-paradoxical groups. We shall

talk a little more about amenable groups later.

More immediately, Theorem 6 tells us a little about which groups are para-

doxical.
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Corollary 6.1 If a group G contains H, a paradoxical subgroup, then G is

paradoxical.

Proof. H acts on G by left multiplication, without nontrivial fixed points.

(Inverses prevent this from happening.) So G is H-paradoxical by Theorem 6.

But then G is G-paradoxical.

Q.E.D.

This corollary immediately implies the next:

Corollary 6.2 Any group with a free subgroup of rank 2 is paradoxical.

A stronger converse of Theorem 6 is true:

Theorem 7 If X is G-paradoxical, then G is paradoxical.

Proof. . Suppose A′i, B
′
j and gi, bj witness that X is G-paradoxical. Then

consider H, some G-orbit on X, and a point x ∈ H. Define Ai = {g : g(x) ∈

H ∩ A′i} and Bj = {g : g(x) ∈ H ∩ B′j}. These are all pairwise disjoint, since

the Ai, Bj are all pairwise disjoint.

∪gi(Ai) = ∪{gig : g(x) ∈ H ∩ A′i} = ∪{gig : gig(x) ∈ H ∩ gi(A′i)} = {g′ :

g′(x) ∈ X} = G

Similarly, we obtain ∪hj(Bj) = G.

Q.E.D.

Our “lifting” technique is not yet overwhelmingly helpful, since group ac-

tions often have many nontrivial fixed points. Of course, if we restrict our

attention to only the nontrivial fixed points of a space, we can conclude the

existence of a paradoxical subset.
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We shall be interested in ways to applying Theorem 6 where G=F , the

free group of rank 2, and realizing F as a subgroup of G3, the isometry group

of R3. Then, once we have figured out what to do with the nontrivial fixed

points, we shall have proved the Banach-Tarski Paradox .

The Hausdorff Paradox

In 1914, in an attempt to show the nonexistence of certain measures on the

sphere, F. Hausdorff constructed the following paradox: Except for a countable

number of points, S2 may be partitioned into three subsets A,B,C such that

A ' B ' C ' (B ∪C), where ' denotes congruence (not to be confused with

∼, which denotes equidecomposability).

His method was to find two rotations of S2 which generated a free group

isomorphic to Z2 ∗ Z3. These were rotations of 2π/3 and π about axes whose

interior angle was some θ where cos 2θ is transcendental.

Since we are primarily interested in proving the Banach-Tarski Paradox ,

we shall take a slightly more direct tack, due to Swierczkowski [Sw]. It will

suffice to find two rotations which generate which generate a free subgroup of

rank 2 of SO3. This will enable us to obtain a paradoxical decomposition by

lifting to S2. (In Hausdorff’s example, Z2 ∗Z3 also contains such a subgroup.)

Theorem 8 There exist two independent rotations φ, ρ which fix the origin in

R3. Hence, for n ≥ 3, SOn contains a free subgroup of rank 2.

As it turns out, “most” pairs of rotations are independent, and in the

following proof arccos(3/5) can be replaced by arccos(r) where r is any ra-

tional 6= 0,±(1/2),±1. Wagon, in [W], proves the result using an angle of

arccos(1/3).

12



Proof. We shall let φ and ρ be counterclockwise rotations about the z-axis

and x-axis, respectively, each through the angle arccos 3/5. Then

φ±1 =


3/5 ∓4/5 0

±4/5 3/5 0

0 0 1

 ρ±1 =


1 0 0

0 3/5 ∓4/5

0 ±4/5 3/5

 .

We intend to show that no nontrivial reduced word in φ±1, ρ±1 is the iden-

tity. For if there is such a word, we may conjugate by φ (if necessary) to obtain

a word w ending in φ which equals the identity.

We claim that w(1, 0, 0) is of the form (a, b, c)/5k where a, b, c are integers

and b is not divisible by 5. This shows that w(1, 0, 0) 6= (1, 0, 0), which is a

contradiction.

The claim will be proved by induction. We start off with w of length one.

Then w = φ±1, and w(1, 0, 0) = (3, 4, 0)/5, and everything checks.

Now, for longer words, if w = φ±1w′ or w = ρ±1w′, where w′ is of the form

(a′, b′, c′)/5k−1, then w(1, 0, 0) = (a, b, c)/5k, where

a = 3a′ ∓ 4b′, b = 3b′ ± 4a′, c = 5c′ for w = φ±1w′,

or a = 5a′, b = 3b′ ∓ 4c′, c = 3a′ ± 4b′ for w = ρ±1w′.

This shows that a, b, c will always be integers.

To show b is never divisible by 5, we consider what happens when w is of

the following four forms (where ν is any word):

if w = φ±1ρ±1ν, then b = 3b′ ± 4a′ where 5 divides a′;

if w = ρ±1φ±1ν, then b = 3b′ ∓ 4c′ where 5 divides c′;

if w = φ±1φ±1ν or w = ρ±1ρ±1ν, then b = 6b′ − 25b′′,
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where a′′, b′′, c′′ are the integers arising from ν(1, 0, 0).

The validity of the first two cases is obvious from the preceding equations;

in the last two cases, the arguments are similar and go like this one for the

third case: b = 3b′±4a′ = 3b′± (12a′′∓16b′′) = 3b′+9b′′±12a′′−16b′′−9b′′ =

3b′ + 3(3b′′ ± 4a′′)− 25b′′ = 6b′ − 25b′′.

Q.E.D.

Now every g ∈ F , our free subgroup, fixes two points on the sphere. Let

D = { all points fixed by some g ∈ G}. Then D is countable, and to S2 \ D

we can apply Theorem 6 to obtain:

Theorem 9 (Hausdorff Paradox) There is a countable set D such that S2\

D is SO3-paradoxical.

The Banach-Tarski Paradox

We shall soon show, however, this countable set D doesn’t matter much.

Theorem 10 S2 and S2 \D are SO3-equidecomposable.

The proof is very similar to the proof of Theorem 3. Choose an axis

of rotation which doesn’t fix any points of D. Then consider the set of all

rotations around this axis for which some integer multiple of it sends a point

of D to another point of D. This is a countable set. But there are uncountably

many possible angles; pick one, say θ.

Let ρθ be the rotation around the axis by θ. Then no multiple of ρθ will

send a point of D to another point of D, and it follows that ρmθ (D) and ρnθ (D)

are disjoint for m 6= n ≥ 0.
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So let A = ∪{ρnθ (D) : n ∈ N+} and B = S2 \ A.

We obtain S2 \D = B ∪ A ∼ B ∪ ρ−1
θ (A) = S2.

Q.E.D.

This shows that S2 is SO3-paradoxical. Moreover, it follows that

Theorem 11 (Banach-Tarski Paradox ) B3, the solid ball in R3, is G3-

paradoxical.

Proof. Since S2 is paradoxical, we can obtain a paradox for any “thick-

ened” shell by producing a paradox for one sphere in this shell, and then

putting points along a radius in the same piece in a decomposition. In partic-

ular, we see that B3 \ {0} is paradoxical.

It remains to be shown that B3 \ {0} ∼ B3, for then

B3 = B3 \ {0} ∪ {0}

∼ B3 \ {0} ∪ B3 \ {0} ∪ {0}

= B3 \ {0} ∪ B3

∼ B3 ∪ B3,

which would prove the theorem.

So choose a broken circle C ′ ⊆ B3 \{0} with the origin as its broken point.

By Theorem 3, C ′ is equidecomposable with a completed circle C. Thus,

B3 \ {0} = B3 \ ({0} ∪ C ′) ∪ C ′

∼ B3 \ ({0} ∪ C ′) ∪ (C ′ ∪ {0})

= B3.

Q.E.D.
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Almost an identical proof gives

Corollary 11.1 R3 is paradoxical.

The equidecomposability relation is a useful tool, as we have seen in our

proofs, and so it deserves further investigation. It is an equivalence relation, so

we can define another relation between ∼-equivalence classes of sets: A � B

if and only if A is equidecomposable with a subset of B.

This relation � is both reflexive and transitive, by definition. Further-

more, it is also anti-symmetric: if A � B and B � A, then A ∼G B. This

fact is proved by a generalization of the well-known Schröder-Bernstein Theo-

rem of set theory— Banach was able to generalize it for equivalence relations

satisfying these two properties (which ∼G satisfies):

(i) if A � B, then there exists a bijection g : A → B such that if C ⊆ A,

then C ∼ g(C),

(ii) if A1 ∩ A2 = B1 ∩ B2 = ∅, and if A1 ∼ B1 and A2 ∼ B2, then

A1 ∪ A2 ∼ B1 ∪B2.

Theorem 12 (Banach-Schröder-Bernstein Theorem ) Let G act on X

and A,B ⊆ X. Then A � B and B � A implies that A ∼G B.

Proof. This proof is practically identical to the proof of the classical

theorem. Notice how the only information we use about ∼ are the properties

(i) and (ii) above.

Let f : A → B′(⊆ B) and g : B → A′(⊆ A) be bijections which exist by

property (i). Now let C0 = A \ A1, and define inductively Cn+1 = gf(Cn).

Let C = ∪ Cn. Then (A \ C) = g(B \ f(C)) since if x ∈ f(C), then g(x)

must be in C. Hence, by property (i) A \C ∼ B \ f(C). But also C ∼ f(C).

So by property (ii), A \ C ∪ C ∼ B \ f(C) ∪ f(C), which means A ∼ B.
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Q.E.D.

To show the power of this theorem we now verify that pieces in a paradox-

ical decomposition can be taken to be a partition of the set:

Theorem 13 G acts on X, E ⊆ X. Then E is G-paradoxical if and only if

there exist disjoint A,B such that A ∪B = E and A ∼ B ∼ E.

Proof. We already know that if E is G-paradoxical, then we can find

disjoint A and B such that A ∼ E ∼ B, so all that remains to be shown is

that we can take A ∪B = E.

But E ∼ A ⊆ E \ B ⊆ E, so we obtain A � E \ B � E. Now since

E ∼ A, we conclude that E \B ∼ A. So take A′ = E \B and B′ = B, both

of which are equidecomposable to E, disjoint, and whose union is all of E.

Q.E.D.

Theorem 12 also immediately yields a much stronger form of the Banach-

Tarski Paradox :

Theorem 14 (Banach-Tarski Paradox , Strong Form) If A and B are

bounded subsets of R3 with nonempty interior, then A ∼ B.

Proof. We want to show A � B, for then B � A is similarly proved, and

we obtain by Theorem 12 that A ∼ B.

So choose balls K and L such that K contains A and L is contained by

B. Then for some n large enough, K ⊆ n copies of L. Then we have that

A ⊆ K ⊆ (n copies of L) � L ⊆ B, where the � arises from repeated Banach-

Tarski Paradox duplications of L. Hence A � B.

Similarly, we obtain B � A, and so A ∼ B.
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Q.E.D.

Congruence by Dissection

A problem of classical geometry asks when a polygon can be cut up (in the

classical sense, ignoring boundaries) into polygonal pieces and reassembled

to form another polygon. This kind of decomposition equivalence is called

congruence by dissection.

Theorem 15 (Bolyai-Gerwain Theorem) Two polygons are congruent by

dissection if and only if they have the same area.

Proof. The forward implication is clear. The reverse implication is shown

by proving that any polygon can be dissected into finitely many triangles, a

triangle is congruent by dissection to a square, and two squares are congruent

by dissection to a larger square. Thus every polygon is congruent by dissection

to some square of the same area. If two polygons have the same area, then their

associated squares are identical, and the polygons are congruent by dissection

with each other.

Q.E.D.

Higher dimensional analogues of this theorem do not exist. For instance,

Dehn proved that a regular tetrahedron in R3 is not congruent by dissection

with a cube of the same volume. The Banach-Tarski Paradox , nevertheless,

says that they are equidecomposable.

In the plane, we have the following relationship between congruence by

dissection and equidecomposability:
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Theorem 16 If P1, P2 are polygons which are congruent by dissection , then

P1 ∼ P2.

Proof. The interiors of the pieces of the polygon are obviously equidecom-

posable. We want to show that the whole polygon is equidecomposable with

the interiors of the pieces, and we do this by letting the interiors “absorb” the

boundaries of each of the pieces.

The boundaries consist of a finite number (and length) of intervals. So find

a disc contained in the polygon, and use a construction similar to Theorem 3,

except take a broken annulus in this disc instead of a broken circle. Cutting

up each of the intervals as necessary, we can “absorb” these (open, closed, or

half-open) intervals by using an (open, closed, or half-open) annulus, which is

equidecomposable with a broken annulus by the technique of Theorem 3, and

then inserting these intervals.

Since there are only finitely many such intervals, the process terminates.

Q.E.D.

Note, then, that polygons of the same area are equidecomposable. The

converse is also true, but we shall not prove it here. The difference between

two and three dimensions is highlighted in the fact that in R3, any two poly-

hedra are equidecomposable!

Minimizing the Pieces

So far, we have not paid attention to how many pieces we actually use to

effect a duplication of a ball. In our previous discussion our duplication of the

sphere used no more than eight pieces (four from Theorem 5 multiplied by
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two from Theorem 10); hence, our duplication of the ball used no more than

seventeen (by careful application of Theorem 11 we could bring this down to

thirteen). One could question why we should even care about pieces at this

point, if it weren’t for the truly remarkable fact that we only need five!

This is surprisingly low; in fact, the minimum number needed to duplicate

any set with any group action is four (because otherwise one of the pieces

would by itself be congruent to the entire set, which means it is the entire

set). We will not eke out this minimal answer for the ball just to torture

ourselves, for the method we will use will turn out to be applicable in general

to certain types of group actions, called locally commutative group actions.

Recall that the stabilizer of a point x is Stab(x) = {σ ∈ G : σ(x) = x}.

Definition 3 Let G act on X. This action will be called locally commuta-

tive if for every point x ∈ X the stabilizer Stab(x) is commutative, i.e., if the

subgroup of G which fixes x is commutative.

Whereas earlier, fixed points of a free group’s action posed a problem, the

identification of a locally commutative group action will provide us with a new

way to deal with them.

First, we will need the following theorem.

Theorem 17 Let F be the free group generated by σ and τ . Then we can

actually partition F into four sets A1, ..., A4 such that σ(A2) = A2 ∪ A3 ∪ A4

and τ(A4) = A1 ∪ A2 ∪ A4.

Moreover, for any fixed w ∈ F , the partition can be chosen such that w is

in the same piece as the identity of F .

In [W], Wagon seems to use an unneccesary argument to prove the theorem—

we shorten it below:
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Proof. We shall use the same four-piece partition as described in the proof

of Theorem 5, where B(φ) denotes all words beginning on the left with φ. Fix

some w in F , and let ρ denote the leftmost letter in the word w.

Now suppose, for instance, that ρ = τ−1. (The other cases are similar.)

Then we may choose our partition as follows:

A1 = B(σ)

A2 = B(σ−1)

A3 = B(τ) \ {τn : n ∈ N+}

A4 = B(τ−1) ∪ {τn : n ∈ N+} ∪ {1}

These sets have the property that 1, w are in the same piece, as well as

satisfy the relations above: σ(A2) = A2 ∪A3 ∪A4 and τ(A4) = A1 ∪A2 ∪A4.

Q.E.D.

This yields an fruitful corollary which strengthens Theorem 6 for the par-

ticular case where G is a free group of rank 2:

Corollary 17.1 Let F be a free group of rank 2 acting on X without nontrivial

fixed points. Then X is F -paradoxical using four pieces.

Proof. The crucial observation is that lifting a paradox to a set preserves

the number of pieces.

Q.E.D.

We also see, then if G is any group with a free non-Abelian subgroup, then

it has a free subgroup of rank 2, and by virtue of Corollary 6.1, is paradoxical

using four pieces.

We are now in a position to prove the main result about locally commuta-

tive actions:
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Theorem 18 Let F be a free subgroup of rank 2 whose action on X is locally

commutative. Then X is paradoxical using four pieces.

Proof. This fact will be proved by defining the partition orbit by orbit

so as to satisfy the familiar relations σ(A2) = A2 ∪ A3 ∪ A4 and τ(A4) =

A1 ∪ A2 ∪ A4. This will give us the desired paradoxical decomposition using

four pieces. Let σ, τ generate F .

Note that all F -orbits on X are either composed of nontrivial fixed points,

or have no nontrivial fixed points (if x is fixed by w, then ρ(x) is fixed by

ρwρ−1). In the latter case, we partition the orbit as before (see Theorem 6):

take a choice set M from each such orbit, and let Pi = {g(M) : g ∈ Ai}, where

Ai are obtained from any four piece partition guaranteed by Theorem 17.

For an orbit O consisting entirely of fixed points, we must choose a point

x carefully. Let w be a nontrivial word of minimal length which fixes a point

in O. Then choose x to be a point which w fixes. The idea is to describe all

the points in this orbit as the image of a unique representative v ∈ F and, as

before, to lift the paradox from the group onto this orbit, this time in a more

refined manner.

Let ρ be the leftmost letter in the word w. We can see that w can not end

in ρ−1, else conjugation of w by ρ would produce a smaller word fixing x.

We claim that we can write any point y ∈ O as v(x), where v does not end

in w or in ρ−1, and that such a v is unique. Why? Take a minimal word v

such that y = v(x). Then v clearly cannot end in w or w−1, and if it did end

in ρ−1, we could take vw, which doesn’t end in w or ρ−1.

To show that v is unique, we use local commutativity to show that only

powers of w can fix the point x. Else if some z fixed x, zw = wz by local

commutativity, and since F is free, z and w must both be powers of some
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word t (else we would get a nontrivial relation on the letters of F ). This

immediately gives that z is a power of w, for otherwise some smaller power of

t would fix x, contradicting the choice of w.

Then if u and v are both words of the desired form which send x to y, we

obtain that u−1v fixes x. So by the argument above, u−1v is a power of w. We

can assume it is a positive power, for if not, we can do the argument which

follows for v−1u. Then either u−1 begins with a ρ (meaning u ends in ρ−1) or

u−1 cancels the first part of v (meaning v ends in a w) or u = v, as desired.

Then we put y = v(x) in P ′i according as v ∈ Ai, where the partition is

given by Theorem 17, where we ensure that w and the identity lie in the same

piece. Notice here we are using possibly different partitions for different orbits

O, since our partition depends on the word w, which depends on the orbit.

It is a straightforward, but tedious exercise to demonstrate that this con-

struction of P ′i satisfies σ(P ′2) = P ′2 ∪P ′3 ∪P ′4 and τ(P ′4) = P ′1 ∪P ′2 ∪P ′4. Really

the only thing we must take into account is the possibility of muliplying a

word in the desired form by a letter and not getting a word of the desired

form, i.e., getting something ending in w or ρ−1. But because w and 1 lie in

the same piece of the decomposition, we can interchange them when necessary

to obtain a new word representation which is of the desired form, and is in the

same piece as before.

Therefore, we can take Ai = Pi ∪P ′i as our four-piece decomposition of X.

Q.E.D.

Since the action of SO3, and in particular of its free subgroup F of rank 2,

is locally commutative, we have the following result.

Corollary 18.1 S2 is SO3-paradoxical using four pieces, and this is best pos-
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sible.

The converse of Theorem 18 is true, although we shall not prove it here:

Theorem 19 If X is G-paradoxical using four pieces, then G has a free sub-

group of rank 2, whose action on X is locally commutative.

The proof proceeds by identifying two elements σ, τ which are independent:

if g1(A1)∪g2(A2) = X and g3(A3)∪g4(A4) = X, then let σ = g−1
1 g2, and define

τ = g−1
3 g4. These satisfy the stated conditions.

It follows that

Corollary 19.1 A group G is paradoxical using four pieces if and only if G

has a free subgroup of rank 2.

Proof. This follows from Theorem 19 and Corollary 17.1, noting that a

subgroup acts without nontrivial fixed points on G by left multiplication.

Q.E.D.

Let us now apply Theorem 18 to determine the minimal decomposition of

a ball.

Theorem 20 B3, the solid ball in R3, is paradoxical using five pieces, and

this is best possible.

Proof. A five piece decomposition is obtained for the unit ball B by using

Theorem 18 to obtain a four piece decomposition of the sphere, and thickening

the pieces to obtain a four piece decomposition of the open ball minus the

center: let C1, C2, C3, C4 be the such a partition for {x : 0 < |x| < 1}. Theorem
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18 guarantees the relations: σ(C2) = C2 ∪ C3 ∪ C4 and τ(C4) = C1 ∪ C2 ∪ C4

where σ, τ generate a free subgroup F of SO3.

We shall use the “last” spherical shell S, the boundary of B, to produce

the extra point to put at the center. We can choose the partition of F , the

free subgroup of rank 2, given by the first part of Theorem 5 and note that

it satisfies the following relations: σ(A2) = A2 ∪ A3 ∪ A4 ∪ {1} and τ(A4) =

A1∪A2∪A4∪{1}. (Take A1 = B(σ), A2 = B(σ−1), A3 = B(τ), A4 = B(τ−1).)

We apply this partition to one F -orbit O of S consisting of nonfixed points;

for all other orbits in S, use the same partitions as in Theorem 18. Pick any

point x in O, and partition O in the usual fashion with this partition: SO,i =

{g(x) : g ∈ Ai}. We thus obtain a partition of all of S into S1, S2, S3, S4, {x},

satisfying σ(S2) = S2 ∪ S3 ∪ S4 ∪ {x}, and τ(S4) = S1 ∪ S2 ∪ S4 ∪ {x}.

Let ρ be the isometry taking x to 0. Then we can piece everything together;

let B1 = C1 ∪ S1 ∪ {0}, and let the other Bi = Ci ∪ Si. Observe now that

B1 ∪ σ(B2) = B and B3 ∪ τ(B4) ∪ ρ(x) = B.

To see that this is best possible, we assume to the contrary. Suppose we

could find a four piece paradoxical decomposition of the ball B, witnessed by

A1, A2, A3, A4 such that ∪Ai = B, and σ1(A1) ∪ σ2(A2) = B and σ3(A3) ∪

σ4(A4) = B. Without loss of generality let A1 be the piece containing {0}.

Then not both of A3, A4 can fix the origin, else the second copy of B

would be missing a center point, since neither piece contains the origin. So

suppose that σ3(0) 6= 0. Let S denote the spherical boundary of B. Then

σ3(A3) ∩ S ⊆ σ3(B) ∩ S ⊆ an open hemisphere of S, whence σ4(A4)

contains some closed hemisphere H of S.

This implies that A4 contains a closed hemisphere σ−1
4 (H) of S, from which

we conclude that (A1 ∩ A2) ∩ S is contained in S \H, an open hemisphere.
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But if either of σ1, σ2 did not fix the origin, a similar argument shows that

the other of the two pieces A1, A2 would contain a closed hemisphere of S,

contradicting the above remark.

So both σ1, σ2 fix the origin, meaning they map S to S. Immediately we

have a contradiction, for then σ1(A1) ∪ σ2(A2) should cover the entire ball B,

including S, but each of σ1(A1) ∩ S, σ2(A2) ∩ S is only contained in an open

hemisphere by the above remark, and hence cannot cover all of S.

Q.E.D.

m-divisibility

We turn now to a related topic in the study of set decompositions, namely,

given a whole number m, is it possible to partition X into m congruent pieces?

If it is, we say that X is m-divisible. We broach this subject only because

we can use an argument similar in flavor to the proof of the previous theorem,

to show the following:

Theorem 21 Bn is not m-divisible for 2 ≤ m ≤ n.

Proof. Suppose Bn is m-divisible. Then let A1, ..., Am partition the ball

into congruent pieces via σi(A1) = Ai. We can assume without loss of gener-

ality that A1 is the set containing the center point {0}. This implies that the

σi cannot fix the center point, or else the pieces would not be disjoint. Thus,

by the argument above, we see that Ai ∩S = σi(A1)∩S ⊆ σi(B
n)∩S ⊆ some

open hemisphere.

Then this is true for each Ai, including A1, because Ai∩σi(S) lies in an open

hemisphere of σi(S). Therefore S must be coverable by m open hemispheres,

26



which is impossible if m ≤ n. This is easily seen by taking n “poles” of these

hemispheres which determine a plane in Rn. This plane cuts S into two pieces,

the larger one of which contains a point more than a right angle away from any

of the poles. Hence, this point is not covered by any of the open hemispheres.

Q.E.D.

It is unknown whether Bn is m-divisible for m ≥ n. We do know a few

other isolated results on m-divisibility: that S2 is m-divisible for any m ≥ 3,

and that an open or closed interval is not m-divisible for m finite ≥ 1.

Amenable Groups

Earlier we discussed the implications that paradoxes have for the existence

of measures. Now we shall explore a little more this relationship. We shall

present a quick (and not at all comprehensive) survey on the work done in this

area in relation to paradoxes.

Recall that an amenable group G is a group bearing a left-invariant, finitely

additive measure of total measure 1, defined on all subsets of G. Then clearly

an amenable group is non-paradoxical, for otherwise the measure will produce

the contradiction 1 = 2.

A somewhat surprising fact is that the converse is also true, which follows

from the following result of Tarski.

Theorem 22 (Tarski’s Theorem) Let G act on X, and let E ⊆ X. Then

there exists a finitely additive, G-invariant measure on X defined for all subsets

of X and normalizing E if and only if E is not G-paradoxical.
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In particular, we see that a group G is amenable if and only if it is not

paradoxical. For a proof of Tarski’s theorem, we refer the reader to [W, pp.

125-128].

The notion of the amenability of a group seems to be quite an intrinsic one,

for there are many equivalent definitions of amenability in other contexts. For

instance, amenability is equivalent to an assertion about the cogrowth function

of a group which is finitely presented— loosely speaking, this function counts

the number of words of length n which get killed, and the group is amenable if

and only if this function in some sense asymptotically approaches the number

of total words in the group. This characterization is due to J. Cohen. An-

other definition of amenability, due to H. Kesten, relates this property to the

recurrence of random walks in a group with respect to symmetric probability

distributions on the group (see [W, p.157-161] for a reference, and a long list

of other equivalent definitions.)

One may ask whether all groups with no free subgroup of rank 2 are

amenable. This question was only recently answered in the negative, that

is, there is a paradoxical group with no elements of infinite order. However,

under certain restrictions, we do obtain that amenability is equivalent to not

having a free subgroup— for instance, in the group of isometries of Euclidean

space.

Therefore we can show that no paradoxes (using isometries) exist for the

balls in R1 and R2, because these isometry groups have no free subgroups

(since they are solvable, and solvability implies the existence of a finite relation

for any elements in the group derived from the commutator chain characteri-

zation of solvability).

Thus we have the strange fact that Bn is paradoxical when n ≥ 3, and

not paradoxical for n = 1 or n = 2! Recall, however, that the Sierpiński-
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Mazurkiewicz Paradox shows that paradoxes exist in the plane for sets without

interior; this may be contrasted with the fact than the line has no paradoxical

subset.

Conclusion

Paradoxes are useful because they challenge the intuition. We have seen

that paradoxes were constructed to show the nonexistence of certain measures—

but have gained notoriety in their own right as a curiosity. We have only

scratched the surface of the literature on paradoxes. For example, we have

only considered construction of paradoxes on Euclidean spaces. What about

other spaces, such as the hyperbolic plane? Actually, it turns out a Hausdorff

Paradox for the hyperbolic plane actually uses Borel pieces! (For the Euclidean

plane this cannot happen because of Lebesgue measure.) One open problem

asks whether no compact metric space can be paradoxical using Borel pieces.

Another (Marczewski’s Problem) asks whether the S2 admits a paradoxical

decomposition where the pieces have the property of Baire, i.e., differs from a

Borel set by a countable union of nowhere dense sets. Or, can a disc in the

plane be split into three congruent pieces?

Clearly such questions will entertain mathematicians for many years to

come.
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