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1 Introduction

The following is taken from the foreword by Jan Mycielski of the book by Stan Wagon [3].

This book is motivated by the following theorem of Hausdorff, Banach, and
Tarski: Given any two bounded sets A and B in three-dimensional space R3,
each having nonempty interior, one can partition A into finitely many disjoint
parts and rearrange them by rigid motions to form B. This, I believe, is the most
surprising result of theoretical mathematics. It shows the imaginary character of
the unrestricted idea of a set in R3. It precludes the existence of finitely-additive,
congruence-invariant measures over all bounded subsets of R3 and it shows the
necessity of more restricted constructions such as Lebesgue’s measure.

The following is taken from the preface of this book.

While many properties of infinite sets and their subsets were considered to be
paradoxical when they were discovered, the development of paradoxical decom-
positions really began with the formalization of measure theory at the beginning
of the twentieth century. The now classic example (due to Vitali in 1905) of
a non-Lebesgue measurable set was the first instance of the use of a paradoxi-
cal decomposition to show the nonexistence of a certain type of measure. Ten
years later, Hausdorff constructed a truly surprising paradox on the surface of
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the sphere (again, to show the nonexistence of a measure), and this inspired
some important work in the 1920’s. Namely, there was Banach’s construction
of invariant measures on the line and in the plane (which required the discovery
of the main ideas of the Hahn-Banach Theorem) and the famous Banach-Tarski
Paradox on duplicating, or enlarging, spheres and balls. This latter result, which
at first seems patently impossible, is often stated as: It is possible to cut up a
pea into finitely many pieces that can be rearranged to form a ball the size of
the sun!

Their construction has turned out to be much more than a curiosity. Ideas
arising from the Banach-Tarski Paradox have become the foundation of a the-
ory of finitely additive measures, a theory that involves much interplay between
analysis (measure theory and linear functionals), algebra (combinatorial group
theory), geometry (isometry groups), and topology (locally compact topological
groups). Moreover, the Banach-Tarski Paradox itself has been useful in recent
work on the uniqueness of Lebesgue measure: It shows that certain measures
necessarily vanish on the sets of Lebesgue measure zero.

2 The Banach-Tarski Paradox

Definition 1 Subsets A,B of Euclidean space are congruent if A and B can be made to
coincide by rigid motions (combinations of translations and rotations). Notation: A ∼= B.

A
n∼= B if A can be partitioned into disjoint sets A = A1 ∪ · · · ∪An, B can be partitioned

into disjoint sets B = B1 ∪ · · · ∪ Bn, with Ai ∼= Bi, i = 1, . . . , n. In this case we say that A
and B are equidecomposable.

A
n
� B if A

n∼= B′ for some subset B′ of B.

Lemma 1 If A and C are disjoint, B and D are disjoint, A
m∼= B, and C

n∼= D, then

A ∪ C
m+n∼= B ∪D. Similarly with

m
� and

n
�.

Lemma 2 If A
n
� B

m
� C then A

mn
� C. Similarly with

m∼= and
n∼=.

Proposition 1 If A
m
� B

n
� A then A

m+n∼= B.

Proof. This is a simple modification of the Schröder-Bernstein Theorem. Let φ : A → B

be the injective map realizing A
m
� B, and let ψ : B → A be the injective map realizing

2



B
n
� A. Given a ∈ A, consider the chain ψ−1(a), φ−1ψ−1(a), . . . as far as you can go. Call

this the ancestral chain of a. Then A = Ae ∪ Ao ∪ A∞, where Ae = {a ∈ A : a has an
even length ancestral chain}, Ao = {a ∈ A : a has an odd length ancestral chain}, and
A∞ = {a ∈ A : a has an infinite length ancestral chain}. Similarly B = Be ∪Bo ∪B∞. Then

φ : Ae ∪ A∞
onto→ Bo ∪ B∞ and ψ−1 : Ao

onto→ Be. Partition Ae ∪ A∞ into m pieces via φ and

Ao into n pieces via ψ. This yields A
m+n∼= B. 2

Proposition 2 Let D ⊂ R2 be the closed unit disk centered at the origin. Then D
n+2∼= D∪(n

copies of (0, 1]).

Proof. Let A be the set of segments of the form reiθ, 0 < r ≤ 1, θ = 1, 2, 3, . . ., and let

B be the complement of A with respect to D. Then A
n+1∼= A ∪ (n copies of (0, 1]) (rotate A

backwards through n radians), and B
1∼= B. 2

Proposition 3 Let S ⊂ R3 be the unit sphere centered at the origin, D be a countable subset

of S, and D′ be the complement of D with respect to S. Then S
2∼= D′.

Proof. Pick an axis which misses D and choose a rotation α about that axis such that
D,αD, α2D, . . . are all disjoint. Let A = D ∪ αD ∪ α2D ∪ · · · and B be the complement of

A with respect to S. Then A
1∼= αD ∪ α2D ∪ · · · = αA (rotate via α) and B

1∼= B. Then

S
2∼= D′ = αA ∪B. 2

Theorem 1 If S and S1 are disjoint unit balls, then S
9∼= S ∪ S1; i.e., a unit ball can be

disassembled into nine pieces and reassembled to make two unit balls.

Proof. Let S ⊂ R3 be the unit sphere centered at the origin. Let α be the rotation by
180◦ about the z-axis and let β be the rotation by 120◦ about another axis such that α2 = e
(where e is the identity), β3 = e, and no other relations hold between α and β. Why can
we do this? Suppose β is a rotation about an axis in the xz-plane. Any relation between α
and β is an algebraic equation involving the cosine of the angle between the two axes. Only
a countable number of words formed from α and β is possible, so there are only a countable
number of bad choices for the axis of β.

Let G be the group generated by α and β. Besides e, a typical element of G is αβε1αβε2 · · ·
or βε1αβε2α · · · where εi = 1 or 2. Let γ be an element of G other than e. Then γ is a rotation
about some axis. Let D be the collection of all points of S on these axes. D is countable,
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and δD = D if δ ∈ G (for if x is on the axis of γ, then δx is on the axis of δγδ−1). On D′,
the complement of D with respect to S, no element is fixed by any element of G (except by
e).

Given x ∈ D′, let Sx = {γx : γ ∈ G} (the orbit of x). For two elements x, y ∈ D′,
either Sx = Sy or Sx ∩ Sy = ∅, so we have an equivalence relation on the points of D′. Pick
one element from each equivalence class (invoking the Axiom of Choice) to form the set T .
Then every element of D′ is of the form γt for some t ∈ T , γ ∈ G, with γ and t uniquely
determined by that element of D′.

Let
A = {γt : t ∈ T, γ = e or γ = αβε1 · · ·},
B = {γt : t ∈ T, γ = βαβε2 · · ·},
C = {γt : t ∈ T, γ = β2αβε2 · · ·}.

Then A∪B ∪C = D′, βA = B, βB = C, and βC = A. But αB ∪ αC ⊂ A (since you don’t

get e). So B ∪ C
1
� A, A

1∼= B, B
1∼= C, and C

1∼= A. Then

A ∪ (B ∪ C)
2
� B ∪ (C)
1
� A.

Similarly A ∪B ∪ C
2
� B. So D′

2
� A and D′

2
� B. Therefore S = D′ ∪D

2∼= D′
2
� A, where

the first congruence comes from Proposition 3. So S
4
� A.

Now let S1 be another sphere congruent to but disjoint from S. Then S1

4
� B and

S ∪ S1

8
� A ∪ B. Let S and S1 be the solid balls bounded by S and S1, respectively. Let

A and B be the sets obtained by “filling in” the radii from A and B, respectively, into but
not including the center of S; e.g, A = {x ∈ S : 0 < ‖x‖ ≤ 1 and x/‖x‖ ∈ A}. Then

(S \ {O}) ∪ (S1 \ {O′})
8
� A ∪B, where O′ is the center of S1.

Mapping O to O and O′ to anywhere else in S \ (A ∪B), we have that S ∪ S1

9
� S. But

S
1
� S ∪S1. Hence S ∪S1

9∼= S. Therefore one unit ball can be disassembled into nine pieces
and reassembled into two unit balls. 2

Corollary 1 A ball the size of a pea can be disassembled into a finite number of pieces and
reassembled into a ball the size of the sun.

Proof. Let B be a ball the size of a pea and B′ be a ball the size of the sun. Clearly B
1
� B′.

On the other hand, by repeated application of the previous theorem, we can dissemble B
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into a finite number of pieces and reassemble it into a large number of balls of the same size

whose union contains a ball the size of the sun. So B′
n
� B for some n. Therefore B

n+1∼= B′. 2

3 The Role of the Axiom of Choice

The following is taken from the book by Wagon [3].

In their original paper. . . , Banach and Tarski anticipated the controversy
that their counterintuitive result would spawn, and they analyzed their use of
the Axiom of Choice as follows. “It seems to us that the role played by the axiom
of choice in our reasoning deserves attention. Indeed, consider the following two
theorems, which are consequences of our research:

I. Any two polyhedra are equivalent by finite decomposition.

II. Two different polygons, with one contained in the other, are never equivalent
by finite decomposition.

Now, it is not known how to prove either of these theorems without appealing
to the Axiom of Choice: neither the first, which seems perhaps paradoxical, nor
the second, which agrees fully with intuition. Moreover, upon analysing their
proofs, one could state that the Axiom of Choice occurs in the proof of the first
theorem in a more limited way than in the proof of the second.”

Thus Banach and Tarski pointed out that if AC is discarded, then not only
would their paradox be lost, but also the result that such paradoxes do not exist
in the plane. The last sentence of the excerpt refers to the fact that statement
II uses choices from a larger family of sets than does statement I. But Corollary
13.9, which was proved by A. P. Morse. . . in 1949, shows that statement II is
proved in ZF, and is therefore not relevant to a discussion of AC. The exact
role of AC can therefore be loosely summarized as follows. It is necessary to
disprove the existence of various invariant measures on P(Rn) and to construct
such measures, but it is not necessary to disprove the existence of paradoxes.

4 Solution to Tarski’s Circle-Squaring Problem

The following review by the paper of Laczkovich is by Stan Wagon and appears as MR
91b#51034.
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This remarkable paper [2] provides a surprising solution to a 60-year-old open
problem of A. Tarski. The Banach-Tarski paradox does not exist in the plane be-
cause of Banach’s proof that Lebesgue measure extends to an isometry-invariant,
finitely additive measure on all subsets of R2. This result depends heavily on
the amenability of the group of plane isometries. Banach’s result implies that
equidecomposable measurable sets must have the same measure. The question
whether the circle (with interior) is equidecomposable with a square of the same
area—Tarski’s circle-squaring problem—had seen very little progress since its
formulation in 1925.

The paper under review provides a most surprising solution to the problem.
The author proves that the circle and square are equidecomposable using trans-
lations only. The paper begins with a detailed study of the notion of translation-
equidecomposability for subsets of R, and then moves to the situation in R2. En
route to the main theorem, a new result for polygons is obtained, namely that any
polygon is translation-equidecomposable to the square of the same area. Even
for the case of an isosceles right triangle this is a new and difficult result.

The methods of proof are diverse, using deep ideas from number theory, in
particular, the theory of uniform distribution of sequences.
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