

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the R Development Core Team.

Copyright © 2001–2004 R Development Core Team

ISBN 3-900051-09-7

Table of Contents

1	1 Obtaining R	
	ŭ 1	nt versions
2	2 Installing R under Unix	3
	2.1 Simple compilation	
	9	5
3	3 Installing R under Win	dows 6
	3.1 Building from source	6
4	4 Installing R under Mac	OS X 7
	_	S X
5	5 Add-on packages	
J		
	0.	
		9
	0.0 Itemoving packages	
A	Appendix A Essential an	d useful other programs 10
	. U	
	A.2.1 Tcl/Tk	
	A.2.2 Linear algebra	
A	Appendix B Configuration	on on Unix
	B.1 Configuration options	
	B.2 Configuration variables	
	B.2.1 Setting paper size	
		$\dots \dots $
	9	
	9	
	9	
	1	
	9	
	B.7.5 IRIX	
	± /	
	B.7.7 Alpha/FreeBSD	
	B.7.8 AIX	20

6	\mathbf{E}	nabling s	earch in	HTM	IL he	lp				 	 	22
		Java Virtua										
		Java Virtua										
		Java Virtua										
	6.4	Java Virtua	Machines of	on Mac C)S X					 	 	. 23
A	ppe	endix C	New p	latforn	ns	• • • •			• • •	 • • •	 • •	24
F	unc	tion and	variable	index	-		• • • •	• • • •		 	 	25
C	one	ept index	C							 	 	26

1 Obtaining R

Sources, binaries and documentation for R can be obtained via CRAN, the "Comprehensive R Archive Network". See the file 'RESOURCES' in the R distribution for information on CRAN.

1.1 Getting and unpacking the sources

The simplest way is to download the most recent 'R-x.y.z.tgz' file, and unpack it with

```
tar xvfz R-x.y.z.tgz
```

on systems that have GNU tar installed. On other systems you need at least to have the gzip program installed. Then you can use

```
gzip -dc R-x.y.z.tgz | tar xvf -
```

The pathname of the directory into which the sources are unpacked should not contain spaces, as make (specifically GNU make 3.80) does not expect spaces.

If you need to transport the sources on floppy disks, you can download the 'R-x.y.z.tgz-split.*' files and paste them together at the destination with (Unix)

```
cat R-x.y.z-split.* > R-x.y.z.tgz
```

and proceed as above. If you want the build to be usable by a group of users, set umask before unpacking so that the files will be readable by the target group (e.g., umask 022 to be usable by all users).

1.2 Getting patched and development versions

A patched version of the current release, 'r-patched' and the current development version, 'r-devel', are available as daily tarballs and via access to the R Subversion repository.

The tarballs are available from ftp://ftp.stat.math.ethz.ch/pub/Software/R/. Download either 'R-patched.tar.gz' or 'R-devel.tar.gz' (or the '.tar.bz2' versions) and unpack as described in the previous section.

These versions do not contain the current sources for the recommended packages, which can be obtained by rsync or downloaded from CRAN. To use rsync to install the appropriate sources for the recommended packages, run ./tools/rsync-recommended from the top-level of the R sources.

If downloading manually from CRAN, do ensure that you have the correct versions of the recommended packages: if the number in the file 'VERSION' is 'x.y.z' you need to download the contents of 'http://cran.r-project.org/src/contrib/dir', where dir is 'x.y.z/Recommended' for r-devel or 'x.y.z-patched/Recommended' for r-patched, respectively, to directory 'src/library/Recommended' in the sources you have unpacked. Normally 'R-patched.tar.gz' will have the number of the last released version, and 'R-devel.tar.gz' that of the next minor ('x.y.0') or major release. After downloading manually you need to execute tools/link-recommended from the top level of the sources to make the requisite links in 'src/library/Recommended'. A suitable incantation from the top level of the R sources using wget might be

```
wget -r -l1 --no-parent -A\*.gz -nd -P src/library/Recommended \
   http://cran.r-project.org/src/contrib/dir
./tools/link-recommended
```

Sources are also available via https://svn.R-project.org/R/, the R Subversion repository. If you have a Subversion client (see http://subversion.tigris.org/), you can check out and update the current r-devel from https://svn.r-project.org/R/trunk/ and the current r-patched from 'https://svn.r-project.org/R/branches/R-x-y-patches/' (where x and y are the major and minor number of the current released version of R). E.g., use

svn checkout https://svn.r-project.org/R/trunk/ path to check out r-devel into directory path.

Note that https is required, and that the SSL certificate for the Subversion server of the R project is

Certificate information:

- Hostname: svn.r-project.org
- Valid: from Jul 16 08:10:01 2004 GMT until Jul 14 08:10:01 2014 GMT
- Issuer: Department of Mathematics, ETH Zurich, Zurich, Switzerland, CH
- Fingerprint: c9:5d:eb:f9:f2:56:d1:04:ba:44:61:f8:64:6b:d9:33:3f:93:6e:ad

(currently, there is no "trusted certificate"). You can accept this certificate permanently and will not be asked about it anymore.

The sources for the recommended packages need to be downloaded separately, as described earlier in this section.

2 Installing R under Unix

R will configure and build under a number of common Unix platforms including i386-freebsd, cpu-linux-gnu for the i386, alpha, amd64, arm, hppa, ia64, m68k, powerpc, and sparc CPUs (see e.g. http://buildd.debian.org/build.php?&pkg=r-base), powerpc-apple-darwin and sparc-sun-solaris, as well as probably (it is tested less frequently on these) i386-netbsd, i386-openbsd, i386-sun-solaris, mips-sgi-irix, alpha-dec-osf4, rs6000-ibm-aix and hppa-hp-hpux.

In addition, binary distributions are available for most common Linux distributions, and for Mac OS X (Darwin) with and without X11. See the FAQ for current details. These are installed in platform-specific ways, so for the rest of this chapter we consider only building from the sources.

2.1 Simple compilation

First review the essential and useful tools and libraries in Appendix A [Essential and useful other programs], page 10, and install those you want or need. Ensure that the environment variable 'TMPDIR' is either unset or points to a valid temporary directory.

Choose a place to install the R tree (R is not just a binary, but has additional data sets, help files, font metrics etc). Let us call this place R_-HOME . Untar the source code. This should create directories 'src', 'doc', and several more. (At this point North American readers should consult Section B.2.1 [Setting paper size], page 14.) Issue the following commands:

```
./configure
make

(See Section B.3 [Using make], page 14 if your make is not called 'make'.)

Then check the built system works correctly, by
make check
```

Failures are not necessarily problems as they might be caused by missing functionality, but you should look carefully at any reported discrepancies. To re-run the tests you would need

```
make check FORCE=FORCE

More comprehensive testing can be done by make check-devel

or

make check-all

see 'tests/README'.
```

If these commands execute successfully, the R binary will be copied to the 'R_HOME/bin' directory. In addition, a shell-script front-end called 'R' will be created and copied to the same directory. You can copy this script to a place where users can invoke it, for example to '/usr/local/bin/R'. You could also copy the man page 'R.1' to a place where your man reader finds it, such as '/usr/local/man/man1'. If you want to install the complete R tree to, e.g., '/usr/local/lib/R', see Section 2.3 [Installation], page 5. Note: you do not need to install R: you can run it from where it was built.

You do not necessarily have to build R in the top-level source directory (say, ' TOP_SRCDIR '). To build in 'BUILDDIR', run

```
cd BUILDDIR
TOP_SRCDIR/configure
make
```

and so on, as described further below. This has the advantage of always keeping your source tree "clean". (You may need GNU make to allow this, and the pathname of the build directory should not contain spaces.)

Make will also build plain text help pages as well as HTML and LaTeX versions of the R object documentation (the three kinds can also be generated separately using make help, make html and make latex). Note that you need Perl version 5: if this is not available on your system, you can obtain PDF versions of the documentation files via CRAN.

For those obtaining R via Subversion, one additional step is necessary: make vignettes

which makes the 'grid' vignettes (which are contained in the tarballs): it takes several minutes.

Now rehash if necessary, type R, and read the R manuals and the R FAQ (files 'FAQ' or 'doc/html/faq.html', or http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html which always has the latest version).

2.2 Making the manuals

There is a set of manuals that can be built from the sources,

```
'refman' Printed versions of all the help pages.
```

'R-FAQ' R FAQ (which is already built for you).

'R-intro' "An Introduction to R".

'R-data' "R Data Import/Export".

'R-admin' "R Installation and Administration", this manual.

'R-exts' "Writing R Extensions".

'R-lang' "The R Language Definition".

To make these, use

```
make dvi to create DVI versions
make pdf to create PDF versions
make info to create info files (not 'refman').
```

You will not be able to build the info files unless you have makeinfo version 4.5 or later installed.

The DVI versions can be previewed and printed using standard programs such as xdvi and dvips. The PDF versions can be viewed using Acrobat Reader or (fairly recent versions of) ghostscript: they have hyperlinks that can be followed in Acrobat Reader. The info files are suitable for reading online with Emacs or the standalone GNU Info. The DVI and PDF versions will be created using the papersize selected at configuration (default ISO a4): this can be overridden by setting R_PAPERSIZE on the make command line, or setting R_PAPERSIZE in the environment and using make -e. (If re-making the manuals for a different papersize, you should first delete the file 'doc/manual/version.texi'.)

There are some issues with making the reference manual, and in particular with the PDF version 'refman.pdf'. The help files contain both ISO Latin1 characters (e.g. in 'text.Rd') and upright quotes, neither of which are contained in the standard LaTeX Computer Modern fonts. We have provided four alternatives:

- times Using standard PostScript fonts. This works well both for on-screen viewing and for printing, and is the default from R 2.0.0. The one disadvantage is that the Usage and Examples sections may come out rather wide.
- 1m Using the Latin Modern fonts. These are not often installed as part of a TeX distribution, but can obtained from http://www.ctan.org/tex-archive/fonts/ps-type1/lm and mirrors. This uses fonts rather similar to Computer Modern, but is not so good on-screen as times.

- versions the Computer Modern fonts cm-super Using type-1 of by Vladimir Volovich. installation, obtainable This is a large from http://www.ctan.org/tex-archive/fonts/ps-type1/cm-super and its mirrors. These type-1 fonts have poor hinting and so are nowhere near so readable on-screen as the other three options.
- ae A package to use composites of Computer Modern fonts. This works well most of the time, and its PDF is more readable on-screen than the previous two options. There are three fonts for which it will need to use bitmapped fonts, 'tctt0900.600pk', 'tctt1000.600pk' and 'tcrm1000.600pk'. Unfortunately, if those files are not available, Acrobat Reader will substitute completely incorrect glyphs so you need to examine the logs carefully. This was the default in R version 1.x.y.

Both Unix and Windows installations default to times. The choice can be overridden by setting the environment variable R_RD4PDF. (On Unix, this will be picked up at install time.) The default value is times, hyper: omit hyper if you do not want hyperlinks, e.g. for printing.

2.3 Installation

After

```
./configure
make
make check
```

have been completed successfully, you can install the complete R tree to your system by typing make install

This will install to the following directories:

```
'prefix/bin'
```

the front-end shell script

```
'prefix/man/man1'
the man page
```

```
'prefix/lib/R'
```

all the rest (libraries, on-line help system, ...)

where *prefix* is determined during configuration (typically '/usr/local') and can be set by running configure with the option '--prefix', as in

```
./configure --prefix=/where/you/want/R/to/go
```

This causes make install to install the R executable to '/where/you/want/R/to/go/bin', and so on. The prefix of the installation directories can be seen in the status message that is displayed at the end of configure. You can install into another directory by using

```
make prefix=/path/to/here install
```

More precise control is available at configure time via options: see configure --help for details.

To install DVI, info and PDF versions of the manuals, use one or more of

```
make install-dvi
make install-info
make install-pdf
```

To ensure that the installed tree is usable by the right group of users, set umask appropriately (perhaps to '022') before unpacking the sources and throughout the build process.

3 Installing R under Windows

The 'bin/windows' directory of a CRAN site contains binaries for a base distribution and a large number of add-on packages from CRAN to run on Windows 95, 98, NT4, 2000, ME and XP (at least) on Intel x86 and clones (but not on other platforms).

You do need one of those Windows versions: Windows 3.11+win32s will not work.

Your file system must allow long file names (as is likely except perhaps for some network-mounted systems).

Installation is *via* the installers 'rw2000.exe' or 'miniR.exe'. Just double-click on the icon and follow the instructions. You can uninstall R from the Control Panel.

See the R Windows FAQ for more details.

3.1 Building from source

If you want to build this port from the sources, see the file 'src/gnuwin32/INSTALL' in the source distribution. You will need to collect, install and test an extensive set of tools: see http://www.murdoch-sutherland.com/Rtools/ for the current locations.

You may need to compile under a case-honouring file system: we found that a samba-mounted file system (which maps all file names to lower case) did not work. Open a commands window at a directory whose path does not contain spaces, and run something like

```
tar zxvf R-2.0.0.tgz
cd R-2.0.0\src\gnuwin32
make all recommended
```

sit back and wait (for about 15 minutes on 1GHz PIII with a fast local disc).

For further details, including how to make the documentation and how to cross-compile, see 'src/gnuwin32/INSTALL'.

4 Installing R under Mac OS X

The 'bin/macosx' directory of a CRAN site contains binaries for a base distribution and a large number of add-on packages from CRAN to run on Mac OS X version 10.2.0 or higher.

The simplest way is to use 'R.dmg.sit'. Just double-click on the icon and the archive will be expanded as an image di file. Read the 'ReadMe.txt' inside the disk image and follow the instructions.

See the R for Mac OS X FAQ for more details.

4.1 Building from source on Mac OS X

If you want to build this port from the sources, you can read the above mentioned R for Mac OS X FAQ for full details. You will need to collect and install some tools as explained in the document. Than you have to expand the R sources and configure R appropriately, for example

```
tar zxvf R-2.0.0.tgz
cd R-2.0.0
./configure --with-blas='-framework vecLib' --with-lapack --with-aqua
```

sit back and wait. The last option '--with-aqua' is needed only if you want a Console GUI. The first two options are strongly recommended.

R is by default configured and installed as a framework called 'R.framework'. The default path for 'R.framework' is '/Library/Frameworks' but this can be changed at configure time specifying the flag '--enable-R-framework[=DIR]' or at install time as

```
make prefix=/where/you/want/R.framework/to/go install
```

the 'R.framework' has not to be specified in the path.

5 Add-on packages

It is helpful to use the correct terminology. A *package* is loaded from a *library* by the function library(). Thus a library is a directory containing installed packages; the main library is 'R_HOME/library', but others can be used, for example by setting the environment variable R_LIBS or using the R function .libPaths().

5.1 Installing packages

Packages may be distributed in source form or compiled binary form. Installing source packages requires that compilers and tools (including Perl 5.004 or later) be installed. Binary packages are platform specific and generally need no special tools to install, but see the documentation for your platform for details.

Note that you need to specify implicitly or explicitly the library to which the package is to be installed. This is only an issue if you have more than one library, of course.

To install packages from source on Unix use

```
R CMD INSTALL -1 /path/to/library pkg1 pkg2 ...
```

The part '-l /path/to/library' can be omitted, in which case the first library in R_LIBS is used if set, otherwise the main library 'R_HOME/library' is used. (R_LIBS is looked for in the environment: '.Renviron' is not read by R CMD.)

The same command works in Windows if you have the source-code package files installed. There are a number of options available: use R CMD INSTALL --help to see the current list.

Alternatively, packages can be downloaded and installed from within R. First set the option CRAN to your nearest CRAN mirror, for example

```
> options(CRAN = "http://cran.us.r-project.org/")
```

Then download and install package **foo** by

```
> install.packages("foo")
```

Unless the library is specified (argument lib) the first library in the library search path is used.

What this does is different on Unix and Windows. On Unix it consults the list of available source packages on CRAN, downloads the latest version of the **foo** sources, and installs it (via R CMD INSTALL). On Windows it looks at the list of *binary* versions of packages and downloads the latest version (if any).

On Windows install.packages can also install a binary package from a local 'zip' file by setting argument CRAN to NULL. RGui.exe has a menu Packages with a GUI interface to install.packages, update.packages and library.

On Mac OS X install.packages works as it does on other Unix systems, but there is an additional function install.binaries that will download and install binary packages from CRAN. These Macintosh binary package files have the extension tgz. The Aqua GUI provides for installation of either binary or source packages, from CRAN or local files.

5.2 Updating packages

The command update.packages() is the simplest way to ensure that all the packages on your system are up to date. Set the CRAN option as in the previous section. The update.packages() downloads the list of available packages and their current versions, compares it with those installed and offers to fetch and install any that have later versions on CRAN.

An alternative way of keeping packages up-to-date is provided by the command packageStatus(), which returns an object with information on all installed packages and packages available at multiple repositories (CRAN, local archive, ...). The print and summary methods give an overview of installed and available packages, the upgrade method offers to

fetch and install the latest versions of outdated packages. This allows R to fetch packages from several repositories and keep in sync with all of them, instead of only one CRAN mirror, and is intended to become the default package manager for future versions of R.

5.3 Removing packages

Packages can be removed in a number of ways. From a command prompt they can be removed by

Finally, in most installations one can just remove the package directory from the library.

Note: whereas it is currently possible to install package *bundles*, one cannot remove these as such—the packages contained in the bundle have to removed individually.

Appendix A Essential and useful other programs

This appendix gives details of programs you will need to build R on Unix-like platforms, or which will be used by R if found by configure.

Remember that some package management systems (such as RPM and deb) make a distinction between the user version of a package and the development version. The latter usually has the same name but with the extension '-devel' or '-dev': you need both versions installed.

A.1 Essential programs

You need a means of compiling C and FORTRAN 77 (see Section B.4 [Using FORTRAN], page 14). Some add-on packages also need a C++ compiler.

Unless you do not want to view graphs on-screen you need 'X11' installed, including its headers and client libraries. (On Fedora Core 2 Linux this means the 'xorg-x11-devel' and 'xorg-x11-libs' RPMs, for example. Older Linuxen used 'XFree86-'.)

You will need Perl version 5.004 or later, available via http://www.perl.com/CPAN/, to build any of the on-line documentation.

You will not be able to build the info files unless you have makeinfo version 4.5 or later installed

The typeset documentation needs tex and latex, or pdftex and pdflatex.

A.2 Useful libraries and programs

The command-line editing depends on the readline library available from any GNU mirror: you will need a fairly recent version.

The bitmapped graphics devices jpeg() and png() need the appropriate headers and libraries installed: jpeg (version 6b or later) or libpng (version 1.2.3 or later) and zlib (version 1.1.3 or later) respectively.

The bitmap and dev2bitmap devices make use of ghostscript (http://www.cs.wisc.edu/~ghost).

If you have them installed (including the appropriate headers and of late enough versions), zlib, libbz2 and PCRE will be used if specified by '--with-zlib', '--with-bzlib' or '--with-pcre': otherwise versions in the R sources will be compiled in. As the latter suffice and are tested with R you should not need to change this. In particular, the version of zlib in the R sources has a number of bug fixes and enhancements to work with large file systems on 32-bit platforms.

A.2.1 Tcl/Tk

The tcltk package needs Tcl/Tk installed: the sources are available at http://www.tcl.tk/. To specify the locations of the Tcl/Tk files you may need the configuration options

or use the configure variables TCLTK_LIBS and TCLTK_CPPFLAGS to specify the flags needed for linking against the Tcl and Tk libraries and for finding the 'tcl.h' and 'tk.h' headers, respectively.

Versions of Tcl/Tk from 8.3 to 8.4.7 have been used successfully: 8.0 is no longer supported.

A.2.2 Linear algebra

The linear algebra routines in R can make use of enhanced BLAS (Basic Linear Algebra Subprograms, http://www.netlib.org/blas/faq.html) routines. Some are compiler-system-specific (libsunperf on Sun Sparc¹, libessl on IBM, vecLib on Mac OS X) but ATLAS (http://math-atlas.sourceforge.net/) is a "tuned" BLAS that runs on a wide range of Unix-alike platforms. If no more specific library is found, a libblas library in the library path will be used. You can specify a particular BLAS library via a value for the configuration option '--with-blas' and not to use an external BLAS library by '--without-blas'. (Alternatively, the environment variable BLAS_LIBS can be set, for example in 'config.site'.)

For systems with multiple processors it is possible to use a multi-threaded version of ATLAS. (Prior to R 1.8.0 this was not supported since SIGINT signals sent to the process and handled by the wrong thread could result in segfaults.) A remaining issue is that R profiling, which uses the SIGPROF signal, may cause problems. You may want to disable profiling if you use a multi-threaded version of ATLAS. You can use a multi-threaded ATLAS by specifying

```
--with-blas="-lptf77blas -lpthread -latlas"
```

Another tuned BLAS which is available for some processors under Linux is by Kazushige Goto, currently available at http://www.cs.utexas.edu/users/flame/goto/. Once this is installed, it can be used by one of

```
--with-blas=goto
--with-blas=-lgoto
```

Multi-threaded versions of Goto's BLAS are available, so please note the *caveat* in the previous paragraph.

For Intel processors under Linux, Intel's Math Kernel Library http://www.intel.com/software/products/mkl/ can be used by

```
--with-blas="-lmkl -lguide -lpthread"
```

with the same caveat on multi-threading. (Thanks to Andy Liaw for the information.)

Note that the BLAS library will be used for several add-on packages as well as for R itself. This means that it is better to use a shared BLAS library, as most of a static library will be compiled into the R executable and each BLAS-using package. In any case, the BLAS library must be usable with dynamically-loadable code: this can be a problem with ATLAS on some platforms as it is not by default built with position-independent code.

You will need double-precision and double-complex versions of the BLAS, but not single-precision nor complex routines.

Provision is made for using an external LAPACK library, principally to cope with BLAS libraries which contain a copy of LAPACK (such as libsunperf on Solaris and vecLib on Mac OS X). However, the likely performance gains are thought to be small (and may be negative), and the default is not to search for a suitable LAPACK library. You can specify a specific LAPACK library or a search for a generic library by the configuration option '--with-lapack'. The default for '--with-lapack' is to check the BLAS library and then look for an external library -llapack. Sites searching for the fastest possible linear algebra may want to build a LAPACK library using the ATLAS-optimized subset of LAPACK. To do so specify something like

```
--with-lapack="-L/path/to/libs -llapack -lcblas"
```

since the ATLAS subset of LAPACK depends on libchlas. A value for '--with-lapack' can be set via the environment variable LAPACK_LIBS, but this will only be used if '--with-lapack' is specified (as the default value is no) and the BLAS library does not contain LAPACK.

If you do use '--with-lapack', be aware of potential problems with bugs in the LAPACK 3.0 sources (or in the posted corrections to those sources). In particular, bugs in DGESV and DGESDD have resulted in error messages such as

¹ Using the SunPro aka Forte aka Sun ONE cc and f95 compilers

DGEBRD gave error code -10

(from the Debian -llapack which was current in late 2002). Other potential problems are incomplete versions of the libraries: for example libsunperf from Sun Forte 6.x was missing the entry point for DLANGE and vecLib has omitted the BLAS routine LSAME.

As with all libraries, you need to ensure that they and R were compiled with compatible compilers and flags. For example, this means that on Sun Sparc using the native compilers the flag '-dalign' is needed so libsunperf can be used.

An ATLAS 'tuned' BLAS can also be used on Windows: see 'src/gnuwin32/INSTALL' for how to enable this when building from source, and R Windows FAQ for adding pre-compiled support to binary versions. Goto's BLAS can also be used when building from source.

Note that under Unix (but not under Windows) if R is compiled against a non-default BLAS, then all BLAS-using packages must also be. So if R is re-built after ATLAS is installed, then packages such as **quantreg** will need to be re-installed.

Appendix B Configuration on Unix

B.1 Configuration options

configure has many options: running
 ./configure --help

will give a list. Probably the most important ones not covered elsewhere are (defaults in brackets)

'--with-x'

use the X Window System

'--x-includes=DIR'

X include files are in DIR

'--x-libraries=DIR'

X library files are in DIR

'--with-readline'

use readline library (if available) [yes]

'--enable-R-profiling'

attempt to compile support for Rprof() [yes]

'--enable-R-shlib'

build R as a shared library [no]

You can use '--without-foo' or '--disable-foo' for the negatives.

You will want to use '--disable-R-profiling' if you are building a profiled executable of R (e.g. with '-pg)'.

Flag '--enable-R-shlib' causes the make process to build R as a dynamic (shared) library, typically called 'libR.so', and link the main R executable 'R.bin' against that library. This can only be done if all the code (including system libraries) can be compiled into a dynamic library, and there may be a small performance penalty. So you probably only want this if you will be using an application which embeds R. Note that C code in packages installed on a R system linked with '--enable-R-shlib' are linked against the dynamic library and so such packages cannot be used from a R system built in the default way.

B.2 Configuration variables

If you need or want to set certain configure variables to something other than their default, you can do that by either editing the file 'config.site' (which documents all the variables you might want to set) or on the command line as

./configure VAR=value

If you are building in a directory different from the sources, there can be copies of 'config.site' in the source and the build directories, and both will be read (in that order). To force a single file to be read, set the environment variable CONFIG_SITE to the location of the file.

These variables are *precious*, implying that they do not have to be exported to the environment, are kept in the cache even if not specified on the command line and checked for consistency between two configure runs (provided that caching is used), and are kept during automatic reconfiguration as if having been passed as command line arguments, even if no cache is used.

See the variable output section of configure --help for a list of all these variables.

If you find you need to alter configure variables, it is worth noting that some settings may be cached in the file 'config.cache', and it is a good idea to remove that file (if it exists) before re-configuring. Note that caching is turned *off* by default: use the command line option '--config-cache' (or '-C') to enable caching.

B.2.1 Setting paper size

One common variable to change is R_PAPERSIZE, which defaults to 'a4', not 'letter'. (Valid values are 'a4', 'letter', 'legal' and 'executive'.)

B.2.2 Setting the browser

Another precious variable is R_BROWSER, the default browser, which should take a value of an executable in the user's path or specify a full path.

B.2.3 Compilation flags

If you have libraries and header files, e.g., for GNU readline, in non-system directories, use the variables LDFLAGS (for libraries, using '-L' flags to be passed to the linker) and CPPFLAGS (for header files, using '-I' flags to be passed to the C/C++ preprocessors), respectively, to specify these locations. These default to '/usr/local/lib' and '/usr/local/include' to catch the most common cases. If libraries are still not found, then maybe your compiler/linker does not support re-ordering of '-L' and '-1' flags (this has been reported to be a problem on HP-UX with the native cc). In this case, use a different compiler (or a front end shell script which does the re-ordering).

B.2.4 Making manuals

The default settings for making the manuals are controlled by R_RD4PDF , R_RD4DVI and $R_PAPERSIZE$.

B.3 Using make

To compile R, you will most likely find it easiest to use GNU make. On Solaris 2.6/7/8 in particular, you need a version of GNU make different from 3.77; 3.79.1 works fine, as does the Sun make. The native make is reported to fail on SGI Irix 6.5 and Alpha/OSF1 (aka Tru64).

To build in a separate directory you need a make that uses the VPATH variable, for example GNU make, or Sun make on Solaris 2.7/8/9 (but not earlier).

If you want to use a make by another name, for example if your GNU make is called 'gmake', you need to set the variable MAKE at configure time, for example

./configure MAKE=gmake

B.4 Using FORTRAN

To compile R, you need a FORTRAN compiler or f2c, the FORTRAN-to-C converter (http://www.netlib.org/f2c). The default is to search for g77, f77, xlf, frt, pgf77, f132, af77, fort77, f90, xlf90, pgf90, epcf90, f95, fort, xlf95, lf95, g95, and fc (in that order)¹, and then for f2c, and use whichever is found first; if none is found, R cannot be compiled. The search mechanism can be changed using the configure variables F77 and F2C which specify the commands that run the FORTRAN 77 compiler and FORTRAN-to-C converter, respectively. If F77 is given, it is used to compile FORTRAN; otherwise, if F2C is given, f2c is used even if a FORTRAN compiler would be be available. If your FORTRAN compiler is in a non-standard location, you should set the environment variable PATH accordingly before running configure, or use the configure variable F77 to specify its full path.

If your FORTRAN libraries are in slightly peculiar places, you should also look at LD_LIBRARY_PATH or your system's equivalent to make sure that all libraries are on this path.

You must set whatever compilation flags (if any) are needed to ensure that FORTRAN integer is equivalent to a C int pointer and FORTRAN double precision is equivalent to a

¹ On HP-UX fort77 is the POSIX compliant FORTRAN compiler, and comes second in the search list.

C double pointer. This is checked during the configuration process. Because of this, f2c will not be accepted on a 64-bit platform as it produces 64-bit integers, incompatible with C's int on such platforms.

Some of the FORTRAN code makes use of COMPLEX*16 variables, which is a FORTRAN 90 extension. This is checked for at configure time², but you may need to avoid compiler flags³ asserting FORTRAN 77 compliance.

For performance reasons⁴ you may want to choose a FORTRAN 90/95 compiler.

If you use f2c you may need to ensure that the FORTRAN type integer is translated to the C type int. Normally 'f2c.h' contains 'typedef long int integer;', which will work on a 32-bit platform but not on a 64-bit platform.

B.5 Compile and load flags

A wide range of flags can be set in the file 'config.site' or as configure variables on the command line. We have already mentioned

CPPFLAGS header file search directory ('-I') and any other miscellaneous options for the C and C++ preprocessors and compilers

LDFLAGS path ('-L'), stripping ('-s') and any other miscellaneous options for the linker and others include

CFLAGS debugging and optimization flags, C

MAIN_CFLAGS

ditto, for compiling the main program

SHLIB_CFLAGS

for shared libraries

FFLAGS debugging and optimization flags, FORTRAN

MAIN_FFLAGS

ditto, for compiling the main program

SHLIB_FFLAGS

for shared libraries

MAIN_LDFLAGS

additional flags for the main link

SHLIB_LDFLAGS

additional flags for linking the shared libraries

Library paths specified as '-L/lib/path' in LDFLAGS are collected together and prepended to LD_LIBRARY_PATH (or your system's equivalent), so there should be no need for '-R' or '-rpath' flags.

To compile a profiling version of R, one might for example want to use 'MAIN_CFLAGS=-pg', 'MAIN_FFLAGS=-pg', 'MAIN_LDFLAGS=-pg' on platforms where '-pg' cannot be used with position-independent code.

Beware: it may be necessary to set CFLAGS and FFLAGS in ways compatible with the libraries to be used: one possible issue is the alignment of doubles, another is the way structures are passed.

 $^{^2}$ as well as its equivalence to the Rcomplex structure defined in 'R_ext/Complex.h'.

 $^{^3\,}$ In particular, avoid g77's '-pedantic', which gives confusing error messages.

⁴ e.g., to use an optimized BLAS on Sun/Sparc

B.6 Building the GNOME interface

This interface is experimental and incomplete. The console offers a basic command line editing and history mechanism, along with tool and button bars that give a point-and-click interface to some R commands. Many of the features of the console are currently stubs.

Two graphics devices have been available but are currently unbundled. The gtk() graphics device is a port of the x11() device to GDK (the GIMP Drawing Kit), and is available from CRAN as package gtkDevice. The gnome() device uses the GNOME canvas, and is not currently available.

Due to its experimental nature, the GNOME interface for R will not be built automatically. You must specify it by running configure with the '--with-gnome' option. For example, you might run

```
./configure --with-gnome
```

but please check you have all the requirements first. You need at least the following libraries (or later) installed

```
audiofile-0.2.1
esound-0.2.23
glib-1.2.10
gtk+-1.2.10
imlib-1.9.10
ORBit-0.5.12
gnome-libs-1.4.1.2
libxml-1.8.16
libglade-0.17
```

It is preferable to have a complete installation of the GNOME desktop environment. If you use Linux, then this should be provided with your distribution.

Remember that some package management systems (such as RPM and deb) make a distinction between the user version of a package and the developer version. The latter usually has the same name but with the extension '-devel'. If you use a pre-packaged version of GNOME then you must have the developer versions of the above packages in order to compile the R-GNOME interface.

The full list of GNOME options to configure is

```
'--with-gnome'
use GNOME, or specify its prefix [no]
'--with-gnome-includes=DIR'
specify location of GNOME headers
'--with-gnome-libs=DIR'
specify location of GNOME libs
'--with-libglade-config=LIBGLADE_CONFIG'
specify location of libglade-config
```

B.7 Platform notes

This section provides some notes on building R on different Unix-like platforms. These notes are based on tests run on one or two systems in each case with particular sets of compilers and support libraries. Success in building R depends on the proper installation and functioning of support software; your results may differ if you have other versions of compilers and support libraries.

Many 32-bit systems have a means of using files > 2Gb, and most are based on that in the Single Unix specification: see http://ftp.sas.com/standards/large.file/x_open.20Mar96.html. However, this is only covered under Linux and Solaris.

B.7.1 Linux

Linux is the main development platform for R, so compilation from the sources is normally straightforward.

Remember that some package management systems (such as RPM and deb) make a distinction between the user version of a package and the developer version. The latter usually has the same name but with the extension '-devel' or '-dev': you need both versions installed. So please check the configure output to see if the expected features are detected: if for example 'readline' is missing add the package containing its headers.

When R has been installed from a binary distribution there are sometimes problems with missing components such as the Fortran compiler. Searching the 'R-help' archives will normally reveal what is needed.

It seems that the 'gcc' compilers normally produce PIC code on 'ix86' Linux but do not necessarily do so on 64-bit versions such as that for AMD Opteron. So care can be needed with BLAS libraries and when building R as a shared library to ensure that position-independent code is used in any static libraries (such as the Tcl/Tk libraries, libpng, libjpeg and zlib) which might be linked against. Fortunately these are normally built as shared libraries with the exception of the ATLAS BLAS libraries.

64-bit versions of Linux are built with support for files > 2Gb, but 32-bit versions usually are not. This can be enabled for Linux kernels 2.4.x or later by the configure option '--enable-linux-lfs': it tests for Linux, a suitable kernel and a 32-bit 'long' type. A discussion of which Linux systems support large files can be found at http://www.suse.de/~aj/linux_lfs.html: it has been available since about 2001.

B.7.2 Mac OS X

You can build R as a Unix application on Mac OS X using the Apple Developer Tools and f2c or g77. You will also need to install an X sub-system or configure with '--without-x'. The X window manager is part of the standard Mac OS X distribution since Mac OS X version 10.3 (Panther).

For more information on how to find these tools please read the R for Mac OS X FAQ.

If you use the X window manager and prefer Terminal.app to xterm, you should be aware that R, like many Unix tools, uses the existence of a DISPLAY environment variable to determine whether an X system is running. This affects the default graphics device for the commmand line version of R and the behaviour of the png() and jpeg devices.

The vecLib library of Mac OS X >= 10.2.2 can be used via the configuration options --with-blas="-framework vecLib" --with-lapack

to provide higher-performance versions of the BLAS and LAPACK routines. With gcc 3.1 that appears to be the only way to build R, as the Fortran support routines in libg2c cannot be linked into a dynamic library. (We have had reports of success and of failure with gcc 3.3.)

B.7.3 Solaris on Sparc

R has been built successfully on Solaris 8 aka Solaris 2.8 aka SunOS 5.8 using gcc/g77 and the SunPro WorkShop 6 (aka Forte 6) compilers and the 'Sun ONE Studio 7 Compiler Suite' (aka Forte 7), and less regularly on Solaris 2.5.1, 2.6, 2.7 and 9. GNU make is needed prior to Solaris 2.7 for building other than in the source tree, and perhaps even then.

The Solaris versions of several of the tools needed to build R (e.g. make, ar and ld) are in /usr/ccs/bin, so if using those tools ensure this is in your path.

gcc 3.2.1 and 3.2.2 generate incorrect code on 32-bit Solaris builds with optimization, but versions 3.1, 3.2, 3.2.3 and later work correctly. At least files 'src/main/engine.c', 'src/main/graphics.c' and 'src/modules/devX11.c' are affected.

If using gcc, do ensure that the compiler was compiled for the version of Solaris in use. (This can be ascertained from gcc -v.) gcc makes modified versions of some header files, and so (for example) gcc compiled under Solaris 2.6 will not compile R under Solaris 2.7. Also, do ensure that it was compiled for the assembler/loader in use. If you download gcc from http://www.sunfreeware.com then you need to download binutils too. To avoid all these pitfalls we strongly recommended you compile gcc from the sources yourself.

When using the SunPro compilers do *not* specify '-fast', as this disables IEEE arithmetic and make check will fail. The maximal set of optimization options known to work is

```
-xlibmil -x05 -dalign
```

We have found little performance difference between gcc and cc but considerable benefit from using a SunPro Fortran compiler: the gcc/f77 combination works well. For many C++ applications (e.g. package Matrix) Forte 7 requires -lCstd, which the configure script will add to SHLIB_CXXLDFLAGS if it identifies the compiler correctly.

A 32-bit version of R is built without large file support and so can only handle files up to 2Gb (unlike 64-bit versions). According to 'man lfcompile' this restriction can be removed if '-D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE=1' is added to 'CFLAGS'. (This has not been tested.)

To compile for a 64-bit target on Solaris (which needs an UltraSparc chip and for support to be enabled in the OS) with the Forte 6 and 7 compilers we used

```
CC="cc -xarch=v9"
CFLAGS="-x05 -xlibmil -dalign"
F77="f95 -xarch=v9"
FFLAGS="-x05 -xlibmil -dalign"
CXX="CC -xarch=v9"
CXXFLAGS="-x05 -xlibmil -dalign"
in 'config.site'.
```

For 64-bit compilation with gcc 3.2.x and later we used

```
CC="gcc -m64"

FFLAGS="-m64 -g -02"

CXXFLAGS="-m64 -g -02"

LDFLAGS="-L/usr/local/lib/sparcv9 -L/usr/local/lib"
```

Note that '/usr/local/lib/sparcv9' will need to be in the 'LD_LIBRARY_PATH' during configuration.

Note that using f95 allows the Sun performance library libsunperf to be selected: it will not work with f77, nor with g77. libsunperf contains both BLAS and LAPACK code, and '--with-lapack' is recommended for 32-bit builds using f95, but not for 64-bit builds where on our test system it failed in both Forte 6U1 and 7, albeit in different ways. Our experience has been that ATLAS's BLAS is faster than libsunperf, especially for complex numbers.

Some care is needed to ensure that libraries found by configure are compatible with the R executable and modules, as the testing process will not detect many of the possible problems. For 32-bit builds under cc the flag '-dalign' is needed for some of the Sun libraries: fortunately the equivalent flag for gcc, '-mno-unaligned-doubles', is the default. In theory, libraries such as libpng, libjpeg, zlib and the ATLAS libraries need to be built with a pic or PIC flag, which could be a problem if static libraries are used. In practice this seems to give little problem for 32-bit builds.

For a 64-bit build, 64-bit libraries must be used. As the configuration process by default sets LDFLAGS to '-L/usr/local/lib', you may need to set it to avoid finding 32-bit addons (as in the gcc -m64 example above). It is possible to build Tcl/Tk as 64-bit libraries with the configure option --enable-64bit, but only with the Forte compiler (and not with gcc) as of Tcl/Tk 8.4.5.

B.7.4 HP-UX

R has been built successfully on HP-UX 10.2 and HP-UX 11.0 using both native compilers and gcc. However, 10.2 has not been tested since R 1.4.0. By default, R is configured to use gcc and g77 on HP-UX (if available). Some installations of g77 only install a static version of the g2c library that cannot be linked into a shared library since its files have not been compiled with the appropriate flag for producing position independent code (PIC). This will result in make failing with a linker error similar to

```
ld: CODE_ONE_SYM fixup to non-code subspace in file foo.o - shared library must be position independent. Use +z or +Z to recompile.
```

('+z' and '+Z' are the PIC flags for the native compiler cc.) If this is the case you either need to modify your g77 installation or configure with

```
F77=fort77
```

to specify use of the native POSIX-compliant FORTRAN 77 compiler.

You may find that **configure** detects other libraries that R needs to use as shared libraries but are only available as static libraries. If you cannot install shared versions you will need to tell **configure** not to use these libraries, or make sure they are not in the library path. The symptom will the linker error shown in the last paragraph. Static libraries that might be found and would cause problems are

```
BLAS use --without-blas
Tcl/Tk use --without-tcltk
GNOME not built by default
libpng use --without-libpng
jpeg use --without-jpeglib
zlib use --without-zlib
```

and bzip2 and pcre are problematic when building 'libR.so', only. These can be avoided by '--without-bzlib' and '--without-pcre' respectively, but these are the defaults.

Some versions of gcc may contain what appears to be a bug at the '-02' optimization level that causes

```
> 2 %/% 2
[1] 1
> 1:2 %/% 2
[1] 0 0 # wrong!!
```

which will cause make check to fail. If this is the case, you should use CFLAGS to specify '-0' as the optimization level to use.

Some systems running HP-UX 11.0 may have a gcc that was installed under HP-UX 10.2. Between versions 10.2 and 11.0 HP-UX changed its support functions for IEEE arithmetic from the recommended functions of the IEEE standard to the ones specified in the C9x draft standard. In particular, this means that finite has been replaced by isfinite. A gcc configured for HP-UX 10.2 run on 11.0 will not find isfinite, and as a result configure does not recognize the machine as fully supporting IEEE arithmetic and so will not complete. The best solution is to install a properly configured gcc. An alternative work-around is to add '-DIEEE_754' to the CFLAGS variable.

You can configure R to use both the native cc and fort77 with

```
./configure CC=cc F77=fort77
```

f90 insists on linking against a static 'libF90.a' which typically resides in a non-standard directory (e.g., '/opt/fortran90/lib'). Hence, to use f90 one needs to add this directory to the linker path via the configure variable LDFLAGS (e.g., ./configure F77=f90 LDFLAGS=/opt/fortran90/lib).

B.7.5 IRIX

R has been built successfully on IRIX64 6.5 using gcc/f77 or cc/f77 for 32-bit executables and the native compilers for a 64-bit executable. The command

```
./configure CC="cc -64" F77="f77 -64" --with-tcltk=no
```

was used to create the 64-bit executable. It was necessary to explicitly omit Tcl/Tk because configure would find the 32-bit version but not detect that is was incompatible with a 64-bit build.

A 32-bit build using gcc/g77 passed make check but failed make test-all-extras in the complex LAPACK tests.

George N. White III reports that the strptime tests in 1.9.0 fail on IRIX 6.5 systems prior to 6.5.22m (e.g. 6.5.19m and 6.5.21m) unless Arthur Olson's timezone data ftp://elsie.nci.nih.gov/pub/ (see also http://cspry.co.uk/computing/Indy_admin/TIMEZONE.html) are installed and -ltz is added to the list of libraries (for example, in environment variable LIBS).

B.7.6 Alpha/OSF1

R has been built successfully on an Alpha running OSF1 V4.0 using gcc/g77 and cc/f77. Mixing cc and g77 fails to configure. The configure option '--without-blas' was used since the native blas seems not to have been built with the flags needed to suppress SIGFPE's. Currently R does not set a signal handler for SIGFPE on platforms that support IEEE arithmetic, so these are fatal.

B.7.7 Alpha/FreeBSD

Attempts to build R on an Alpha with FreeBSD 4.3 have been only partly successful. Configuring with '-mieee' added to both CFLAGS and FFLAGS builds successfully, but tests fail with SIGFPE's. It would appear that '-mieee' only defers these rather than suppressing them entirely. Advice on how to complete this port would be greatly appreciated.

B.7.8 AIX

On AIX 4.3.3 and AIX 5.1, it was found that the use of "run time linking" (as opposed to normal AIX style linking) was required. For this, the R main program must be linked to the runtime linker with the '-brtl' linker option, and shareable objects must be enabled for runtime linking with the '-G' linker option. Without these options, the AIX linker would not automatically link to any shared object with a '.so' extension. Also, the R main program would be unable to dynamically load modules (such as X11) with the dlopen call.

When setting MAIN_LDFLAGS and SHLIB_LDFLAGS accordingly, note that linker flags must be escaped using '-Wl,' if gcc is used for linking: use 'MAIN_LDFLAGS="-Wl,brtl"' and 'SHLIB_LDFLAGS="-Wl,-G"' in this case.

Harald Servat Gelabert harald at cepba dot upc dot es> reported success building R 1.7.0 under AIX 5.1 with

```
CC=xlc

F77=xlf

CXX=xlC

CFLAGS=-03 -qstrict -qmaxmem=8192

FFLAGS=-03 -qstrict -qmaxmem=8192

CXXFLAGS=-02 -qmaxmem=8192

MAIN_LDFLAGS=-W1,-brtl

SHLIB_LDFLAGS=-W1,-G
```

but was unable to use the X libraries or the native BLAS (ESSL) and so used '--without-x --without-blas'.

Tim Hoar <thoar at cgd dot ucar dot edu> reported success building R 1.9.0 under AIX 5.1 in 64-bit mode with

OBJECT_MODE=64 CC=/usr/bin/xlc_r F77=/usr/bin/xlf_r CXX=/usr/bin/xlC_r LDFLAGS='-brtl' CFLAGS='-0 -qstrict' FFLAGS='-0 -qstrict' CXXFLAGS='-0 -qstrict'

and the X11() device worked. His system required the 'Makeconf' file to be edited to replace /lib/crt0.o by /lib/crt0_64.o in R_XTRA_LIBS, and configure now tries to detect this.

We understand that '--enable-R-shlib' does not work under AIX.

6 Enabling search in HTML help

There is a search engine available from the front page of the HTML help system, the page that is displayed by help.start(). The search engine is written in Java and invoked by Javascript code, so the first thing to do is to ensure that both are enabled in your favourite browser. Then try it and see: with most browsers you should see

```
Applet SearchEngine started
```

displayed in the status bar. (Internet Explorer shows Applet started.) Then click on one of the keywords and after a short delay (several seconds) you should see a page of search results.

If this fails you should double-check that Java is enabled in your browser by visiting a page such as http://www.java.com/en/download/help/testvm.jsp (although that will fail for earlier versions of Java such as the Microsoft JVM which do work with R). Java 1.1 is sufficent.

Many thanks to Marc Schwartz in tracking down many of these issues with enabling the Java search engine.

6.1 Java Virtual Machines on Linux

We are aware of problems with certain Java installations. In particular, Sun's Java Run-time Environment j2re 1.4.2_02 to _05 do not work under Linux. Current browsers of the Mozilla family (including Mozilla >= 1.4, Netscape 7.1 and FireFox) are compiled under gcc 3.x and require the ns610-gcc32 version of the Java plugin that was introduced with j2re 1.4.2, so the only Java version that we know to work is j2re 1.4.2_01. Marc Schwartz has kindly made Linux i586 distributions available: see http://www.MedAnalytics.com/INSTALL. They can also be found at Sun's archive at http://java.sun.com/products/archive/.

Other Java installations, for example those from Blackdown and IBM, have been used.

Other useful links are for Mozilla, http://plugindoc.mozdev.org/faqs/java.html and http://www.mozilla.org/releases/mozilla1.6/installation-extras.html, for Konqueror http://www.konqueror.org/javahowto/, for Opera http://www.opera.com/support/search/supsearch.dml?index=459 and for Debian GNU/Linux http://www.debian.org/doc/manuals/debian-java-faq/.

6.2 Java Virtual Machines on Unix

We have much less experience, but we do know that Sun's Run-time Environment j2re 1.4.2_03 does not work under Solaris, whereas j2re 1.4.2_01 and earlier do. Marc Schwartz kindly made Solaris distributions of j2re 1.4.2_01 available: see

http://www.MedAnalytics.com/INSTALL

6.3 Java Virtual Machines on Windows

We have not seen any problems on Windows provided a Java Virtual Machine has been installed and is operational: Sun's current j2re 1.4.2_04 works in Internet Explorer, Netscape 7.1, Mozilla 1.6/7 and Mozilla FireFox 0.8/0.9 on Windows XP. Note that a recent Windows system may not have Java installed at all. For Netscape/Mozilla/FireFox visit http://java.sun.com/getjava/manual.html to install a Sun JVM. Which (if any) JVM is enabled can be set in 'Set Program Access and Defaults' in Windows XP (SP1 or later), and which JVM is used by browser plugins may also be controlled by the Sun Java applet in the Control Panel.

6.4 Java Virtual Machines on Mac OS X

The HTML search engine does not work with Safari under Mac OS X, and Sun's j2re~1.4.x is said not to work with Mozilla 1.6.

The Aqua GUI provides an interface to help.search that may substitute for the Java search.

Appendix C New platforms

There are a number of sources of problems when installing R on a new hardware/OS platform. These include

Floating Point Arithmetic: R supports the POSIX, SVID and IEEE models for floating point arithmetic. The POSIX and SVID models provide no problems. The IEEE model however can be a pain. The problem is that there is no agreement on how to set the signalling behaviour; Sun/Sparc, SGI/IRIX and ix86 Linux require no special action, FreeBSD requires a call to (the macro) fpsetmask(0) and OSF1 requires that computation be done with a '-ieee_with_inexact' flag etc. On a new platform you must find out the magic recipe and add some code to make it work. This can often be done via the file 'config.site' which resides in the top level directory.

Beware of using high levels of optimization, at least initially. On many compilers these reduce the degree of compliance to the IEEE model. For example, using '-fast' on the Solaris SunPro compilers causes R's NaN to be set incorrectly.

Shared Libraries: There seems to be very little agreement across platforms on what needs to be done to build shared libraries. there are many different combinations of flags for the compilers and loaders. GNU libtool cannot be used (yet), as it currently does not fully support FORTRAN (and will most likely never support f2c: one would need a shell wrapper for this). The technique we use is to first interrogate the X window system about what it does (using xmkmf), and then override this in situations where we know better (for tools from the GNU Compiler Collection and/or platforms we know about). This typically works, but you may have to manually override the results. Scanning the manual entries for cc and ld usually reveals the correct incantation. Once you know the recipe you can modify the file 'config.site' (following the instructions therein) so that the build will use these options.

It seems that 'gcc 3.4.x' on 'ix86' Linux defeats attempts by the LAPACK code to avoid computations entirely in extended-precision registers, so file 'src/modules/lapack/dlamc.f' may need to compiled without optimization. If configure detects GNU Fortran it adds flag '-ffloat-store' which suffices, but it is possible that 'src/modules/lapack/Makefile' will need to be edited to remove optimization on other platforms.

If you do manage to get R running on a new platform please let us know about it so we can modify the configuration procedures to include that platform.

If you are having trouble getting R to work on your platform please feel free to get in touch to ask questions. We have had a fair amount of practice at porting R to new platforms . . .

Function and variable index

\mathbf{C}	make	14
configure		
	\mathbf{R}	
I	R_HOME	3
install.binaries	remove.packages	9
install.packages 8		
	\mathbf{U}	
\mathbf{M}	update.packages	8

Concept index

\mathbf{A}	\mathbf{L}
AIX	LAPACK library
B BLAS library	M
BLAS library 11, 19, 17, 16	Mac OS X
\mathbf{F}	Manuals, installing 5
FORTRAN	0
Н	Obtaining R
Help pages 3	P
HP-UX	Packages
	Packages, installing
I	Packages, removing
Installation	1 ackages, updating
Installing R under Mac OS X	Q
Installing under Unix	\mathbf{S}
Installing under Windows 6	Solaris
IBIX	Sources for R