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Big math or soft math?

The main problem in big math is

that almost necessarily it has to

be very specialised, and only rarely

the big results have practical app-

lications. Mathematicians are gra-

tified if once in five years it is disco-

vered that one of the hundred thou-

sand theorems they produce has

applications, which seems ridicu-

lous in the eyes of an engineer or

biologist. A recent overview of the

big math of the 20th century has

been given by Odifreddi, mostly

from the standpoint of a pure ma-

thematician, he too complaining

about the explosion of the num-

ber of publications leading to a hy-

perproduction of low level papers,

swelling only the power of journal

publishers and bringing scientists

in the sphere of control of politics

and commerce.

The American Mathematical So-

ciety is a well organized and cle-

ver organization, but still rather

conservative in its main exponents,

as becomes apparent from the in-

terview with Hyman Bass expres-

sing rather prudent and traditio-

nal views on novelties: “From my

point of view, I don’t see the need

for major new initiatives by the

AMS, but rather the need for su-

staining the progress that’s been

achieved ... We need to be attenti-

ve to the ways in which the disci-

pline has changed, to the presence

of technology, to appropriate ways

of presenting mathematical ideas

in the classroom, and to contempo-

rary understanding of instruction

and student learning.”

One of the most momentous ma-

thematical techniques in applicati-

ons has been the fast Fourier trans-

form algorithm introduced in 1965

by Cooley and Tukey; it is not a

piece of big mathematics, but has

changed the course of engineering

in all realms of information tech-

nology. A similar role shall proba-

bly have other soft mathematical

techniques as genetic algorithms,

neural nets, cellular automata or

fuzzy logic, which go on almost wi-

thout the participation of mathe-

maticians.

H. Bass: Presidential views - an interview.
Notices AMS 48 (2001), 312-315.

P. Odifreddi: La matematica del Novecento.
Einaudi 2000.

An interdisciplinary profession

“The theorems of mathematics on-

ly rarely are directly applied: in ge-

neral only the definitions are really

useful.” (David Sharp, cited in Ro-

ta, p. 159, translated)

“I also believe that changing

fields of work during one’s life is re-

juvenating. If one stays too much

with the same subfields or the sa-

me narrow class of problems a sort

of self-poisoning prevents acquisiti-

on of new points of view and one

may become stale. Unfortunately,

this is not uncommon in mathema-

tical creativity.” (Ulam, p. 290)

One of the psychological rea-

sons for the different behaviour of

mathematicians is that in other

sciences (physics, medicine, gene-

tics, engineering) exchange of in-

formation between scientists is

essential; mathematicians usually

develop methods and intellectual

skills they often are not so incli-

ned to reveal. It is also seldom in

mathematics that large bodies of

knowledge (say databases of diffe-

rential equations or algebraic cur-

ves) are collected.

I think that today one of the

most important tasks for mathe-

maticians is to create model sy-

stems and concepts for the emer-

ging new developments in genetics

and medicine. The strength of the

mathematician is that he is at the

same time a specialist and a ge-

neralist: a specialist of precise re-

asoning, a generalist, because the

formal and abstract laws of ma-

thematics have universal validity.

But in order that this strength be-

comes fertile, the mathematician

must also aquire knowledges in the

fields of applications; without that

he cannot perceive, he cannot com-

municate, he cannot find the fitting

models.

G. Rota: Pensieri discreti. Garzanti 1993.
S. Ulam: Adventures of a mathematician.

Univ. of California UP 1991.
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Teaching mathematics

Lost fields

“As we mathematicians concentrated on

our own discipline, connections with

other fields diminished. Statistics sepa-

rated from mathematics; in many uni-

versities, the two fields are now distinct

departments. Computer science was lar-

gely shunned by mathematicians in the

1970s; it too developed outside of ma-

thematics departments. Academic bean-

counting often ensures that once disci-

plines are divided, walls go up. Why hire

an applied mathematician if the physics

or computer science departments can be

convinced to do so instead? ... In split-

ting, we have lost a real resource for ma-

thematics ... Without question, we can-

not be good mathematicians without an

appreciation and understanding of ab-

straction. But the inward focus that de-

veloped in university mathematics de-

partments has not always served mathe-

matics well, and a broadening of the de-

finition of what constitutes mathemati-

cal research, and what a mathematician

is, is in order.” (Susan Landau)

There are two main reasons for ma-

thematicians losing fields:

1. They are often not interested in

the applications and have not enough

knowledge to appreciate achievements

in other sciences.

2. Once there are no more new theo-

rems to prove, mathematicians with-

draw from the field instead of partici-

pating in the applications.

S. Landau: Something there is that doesn’t love a wall.
Notices AMS November 1995.
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The cycle indicator

Let (X,G) be a finite transformation group
and |X| = n, z1, . . . , zn indeterminates.

For every g ∈ G the permutation of X

induced by g is a product of disjoint cy-
cles, say of b1 cycles of length 1, b2 cycles
of length 2, ..., bn cycles of length n. Clear-
ly b1 + 2b2 + · · · + nbn = n. The monomial
ζg := zb1

1
zb2
2

· · · zbnn is called the cycle indi-
cator of the element g; it depends of course
not only on g, but also on the operation.

The cycle indicator of a permutation of
the form

(·)(·)(··)(··)(··)(· · ·)(· · ·)(· · ··)

is therefore z2
1
z3
2
z2
3
z4.

The cycle indicator ζ von G is then,
as an element of the power series ring
Q[z1, . . . , zn], the averaged sum of the cy-
cle indicators of the elements of G:

ζ := 1
|G!

∑

g∈G

ζg

Example 1: In the Klein four group, consi-
dered as a permutation group of {1, . . . , 4},
the identity has the cycle indicator z4

1
,

each one of the other three elements the
cycle indicator z2

2
; der cycle indicator of the

group is therefore

1

4
(z4

1
+ 3z2

2
)

Example 2: The cycle indicator of S3, con-
sidered as a permutation group of {1, 2, 3}:

1

6
(z3

1
+ 3z1z2 + 2z3)

Example 3:

b1 b 2

b4 b 3

The dihedral group D2, considered as
the group of symmetries of the square (la-
beled as in the figure), consists of the follo-
wing 8 elements with the cycle indicators
given on the right:

identity z4
1

(12)(34) z2
2

(14)(23) z2
2

(13) z2
1
z2

(24) z2
1
z2

(1234) z4
(13)(24) z2

2

(1432) z4

The cycle indicator of the permutation
group is therefore

1
8
(z4

1
+ 2z2

1
z2 + 3z2

2
+ 2z4)

Example 4: We consider Sn as a permuta-
tion group of {1, . . . , n} and denote with ζn
its cycle indicator. For b1+· · ·+bn = n then
there exist exactly n!

1b1 b1!2
b2 b2!···nbn bn!

ele-

ments with the cycle indicator zb1
1

· · · zbnn .
Since Sn has n! elements, we obtain ζn =

∑

b1+2b2+···+nbn=n

z
b1
1

···zbn
n

1b1 b1!2
b2 b2!···nbn bn!

.

With a new indeterminate t we collect
this in

∞∑

n=0

ζn = e

∞∑

k=1

zk

k
tk

The combinatorics of combinatorial chemistry

Combinatorial chemistry origina-
ted in solid phase peptide synthesis,
which subsequently has been refined
and generalized and is nowadays wi-
dely adopted for the generation of
synthetic peptide combinatorial li-
braries for research and drug disco-
very, providing very large numbers
of novel molecules. Both the plan-
ning and the description of such li-
braries invite to mathematical mo-
delling by statistical and combinato-
rial techniques.

Going back to Cayley and Syl-
vester, algebraic-combinatorial des-
cription and counting of isomers has
been founded by Redfield and some
years later by Pólya and elaborated
to considerable depth and comple-
teness by Adalbert Kerber’s school in
Bayreuth.

These techniques rely on the
Cauchy/Frobenius or Burnside lem-
ma: Let X be a finite set and G a fi-
nite group acting on X. For x ∈ X

and g ∈ G we define
Gx := {g ∈ G|gx = x}

Xg := {x ∈ X|gx = x}.
Then

|G||X/G| =
∑

g∈G

|Xg | =
∑

x∈X

|Gx|

The importance of group theory to
combinatorics comes from the fact
that any equivalence relation on a
set X can be thought of as determi-
nated by a group acting on X, e.g. the
group of all permutations of X which
leave each equivalence class invari-
ant. The theorem of Pólya which we
shall now explain is a powerful me-
thod for counting such structures.

Let C (the “set of colours”) be
another finite set. Each mapping
ϕ : X −→ C is considered as a colou-
ring of X, CX is then the set of all co-
lourings. G, operating on X, operates
also on CX , if we define (gϕ)(x) :=

ϕ(g−1x). The orbits Gϕ of this opera-
tion are called patterns in this con-
text.

A weight on the colours is a map-
ping w : C −→ A, where A is a Q-
algebra (essentially a ring in which
division by integers 6= 0 is possible).
For such a weight w and a colouring
ϕ we define w∗(ϕ) :=

∏

x∈X

w(ϕ(x)). It

is immediate that w∗(gϕ) = w∗(ϕ)

for every g ∈ G, thus we can define
w∗(Gϕ) := w∗(ϕ).

For transparency we use, for a
weight w, the following abbreviati-
ons:

[w] :=
∑

a∈A

w(a)

[w2] :=
∑

a∈A

w2(a)

. . .
[w∗] :=

∑

α∈CX/G

w∗(α)

Theorem (Pólya):

[w∗] = ζ([w], [w2], . . . , [wn])

where ζ is the cycle indicator of the
permutation group (X,G) as intro-
duced on the right. The book by Ker-
ber contains many applications and
generalizations.

A. Beck-Sickinger/P. Weber: Kombinatorische
Methoden in Chemie und Biologie. Spektrum 1999.

K. Burgess/A. Liaw/N. Wang: Combinatorial
technologies involving reiterative division/
coupling/recombination - statistical considerations.
J. Med. Chem. 37 (1994), 2985-2987.

B. Déprez a.o.: Orthogonal combinatorial chemical
libraries. J. Am. Chem. Soc. 117 (1995), 5405-5406.

K. Jacobs: Einf̈uhrung in die Kombinatorik.
De Gruyter 1983.

A. Kerber: Applied finite group actions. Springer 1999.
H. Maehr: Combinatorial chemistry in drug research

from a new vantage point
Bioorg. Med. Chem. 5 (1997), 473-491.

H. Maehr/R. Yang: Optimization of a leukotriene D4
antagonist by combinatorial chemistry in solution.
Bioorg. Med. Chem. 5 (1997), 493-496.

E. Martin a.o.: Measuring diversity - experimental
design of combinatorial libraries for drug discovery.
J. Med. Chem. 38 (1995), 1431-1436.

N. Terrett: Combinatorial chemistry. Oxford UP 1998.
T. Wieland: Combinatorics of combinatorial chemistry.

J. Math. Chem. 21/2 (1997), 141-157.

Combinatorics on words

Aldo De Luca, a pupil of Caianiello, has written as a young man an advanced
treatise on neural nets and related topics in cybernetics. Since many years
he is, together with Jean Berstel and Dominique Perrin, one of the leaders in
the combinatorics of texts, a field of pure mathematics at the border between
combinatorics and formal language theory with strong schools in Italy and
France (and partly in Germany), but altogether unnoticed by the big math.

The ingenious techniques in some also very well written new papers (e.g.
Carpi/De Luca) allow to reconstruct a word from its parts, a task very im-
portant in modern genetics.

Semigroup theory has always been helpful in the field, symbolic dynamics
is emerging more recently as a rich collection of topological tools.

J. Berstel/D. Perrin: Theory of codes. Academic Press 1985.
A. Carpi/A. De Luca: Words and repeated factors. Sem. Lothar. 42 (1997).
C. Choffrut/J. Karhum̈aki: Combinatorics of words. Turku Centre CS TR 77 (1996).
A. De Luca: On the combinatorics of finite words. Theor. Comp. Sci. 218 (1999), 13-39.
A. De Luca/L. Ricciardi: Introduzione alla cibernetica. Franco Angeli 1971.
M. Lothaire (ed.): Combinatorics on words. Addison-Wesley 1983.
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Drug discovery

An exciting field, where mathematicians could do much.
“A lead compound is only the beginning of the way to a drug. In a usual-

ly long iterative process one must optimize strength of efficacy, specificity

and duration of efficiency, and minimize side-effects and toxicity ... The

mathematicians in the last decades took over the principles of evolution

to their toolbox. They embodied reproduction, mutation and crossover in

their genetic algorithms. Who could ever admire how such an algorithm

performs optimization tasks of a very complex type unerringly and in sur-

prisingly short time, shall have no more doubts that also the evolution of

the biological species run off in an analogous way.” (Böhm a.o., pp. 147
and 231, translated)

H. Böhm/G. Klebe/H. Kubinyi: Wirkstoffdesign. Spektrum 1996.
A. Romani: Quando Linux incontra la chimica. Linux & C Giugno 2000, 17-21, Luglio 2000, 26-29.
L. Weber/S. Wallbaum/C. Broger/K. Gubernator: Optimization of the biological activiy of combinatorial compound

libraries by a genetic algorithm. Angew. Chemie Int. Engl. Ed. 34(1995), 2280-2282.

Order and topology in biochemistry

Let X be a finite topological space.
Then each x ∈ X has a minimal
neighbourhood Ux and we may de-
fine a relation ≤ on X by x ≤ y :
⇐⇒ Ux ⊂ Uy. It turns out that
≤ is reflexive and transitive, i.e. a
quasiorder.

Conversely let on a finite set X

be given a quasiorder ≤. For x ∈ X

we put then Ux := {y ∈ X|y ≤ x}.
In this way we obtain the mini-
mal neighbourhoods in a topology
on X. The two constructions are
one the inverse of the other, and a
mapping between two finite topo-
logical spaces is continuous if and
only if it is monotone with respect
to the associated quasiorder. The-
refore finite topological spaces and
finite quasiorders are exactly the
same thing. Since finite quasior-
ders are one of the most funda-
mental structures of combinatorial
theory, finite topological spaces are
not as trivial as one often thinks. A
finite topological space is T0 if and
only if the associated quasiorder is
antisymmetric, i.e. a partial order.

Finite topological spaces play a
role in digital topology and so-
me other fields of theoretical com-
puter science, but are also often
used by chemists. At the Institu-
te of Theoretical Chemistry at the
university of Wien, Peter Schuster
and his collaborators are study-
ing a variety of mathematical fa-
cets of molecular evolution theo-
ry, using for example finite topolo-
gies to obtain a description of the
evolutionary dynamics of sets of
secondary structures of RNA mo-
lecules or more general molecular
quasispecies.

That the complete knowledge of
the human genome is only the be-
ginning of a long epoch of rese-
arch becomes convincingly evident
from the fact that one knows the
exact genome of the worm Cae-

norhabditis elegans, a much stu-
died organism much simpler than
man but, according to Schuster,
only 7 percent of its genes are
genetically or biochemically un-
derstood. Therefore mathematical
techniques, especially from those
fields which are suited to sup-
ply principles of order and struc-
ture for understanding, compari-
son, prediction and information or-
ganization, are much needed in
future functional genomic bioche-
mistry and, for example, in an ef-
fective theoretical understanding
of the mechanisms of emerging in-
fectious diseases.

K. Baik: Towards a topological view of databases.
Comp. Math. Appl. 18/5 (1989), 401-409.

J. Cupal/P. Schuster/P. Stadler: Topology in phenotype
space. In R. Giegerich a.o. (ed.): Computer Science
and Biology GCB ’99, 9-15.

E. Domingo a.o.: Quasispecies structure and
persistence of RNA viruses.
Emerging Infectious Diseases 4/4 (1998).

W. Ebeling/R. Feistel: Physik der Selbstorganisation
und Evolution. Akademie-Verlag 1986.

W. Hoppe a.o. (ed.): Biophysik. Springer 1982.
E. Khalimsky/R. Kopperman/P. Meyer: Computer

graphics and connected topologies on finite
ordered sets. Topology and Appl. 36 (1990), 1-17.

A. Rosenfeld: Digital topology.
Am. Math. Monthly 86 (1979), 621-630.

P. Schuster: Molecular insights into life and evolution.
Schr̈odinger lecture in Dublin, November 1998.

P. Schuster: Perspektiven einer computergestützten
Molekularbiologie.
Talk at the University of Wien, 2000.

P. Schuster: Molecular insights into evolution of
phenotypes.
Preprint Univ. Wien TBI pks-00-002 (2000).

H. Sharp: Quasi-orderings and topologies on finite sets.
Proc. AMS 17 (1966), 1344-1349.

R. Stocsits/I. Hofacker/P. Stadler: Conserved secondary
structures in hepatitis B virus RNA.
In R. Giegerich a.o. (ed.): Computer Science and
Biology GCB ’99, 73-79.

R. Stong: Finite topological spaces.
Trans. AMS 123 (1966), 325-348.

A most surprising theorem

Let A be a finite set. On the compact
metrizable space AZ consider the shift
operator T defined by (Tx)n = xn+1.
Symbolic dynamics, the study of this dy-
namical system (or, with a slight varia-
tion in generality and methods, topolo-
gical dynamics or, when the measure-
theoretic aspects are in the foreground,
ergodic theory), is a beautiful rather old
field of mathematics; it originated as a
method in nonlinear ordinary differen-
tial equations, where it is still import-
ant. Less known are the implications in
computer science. There are connections
with Lindenmayer systems and other
applications in the combinatorial theo-
ry of texts. Klaus Schmidt’s theory of
shifts in higher dimensions uses advan-
ced techniques e.g. from algebraic topo-
logy and is surely a difficult part of pure
mathematics, but it seems that it will
have soon practical applications.

Here we state only a fact, which per-
haps is one of the most surprising theo-
rems in all of mathematics.

A subset X of AZ is called invariant,
if for x ∈ X also Tx ∈ X. A closed
(and therefore compact) invariant sub-
set of AZ is called a symbolic dynami-

cal system and this is clearly the main
subject of study in symbolic dynamics,
as groups are for group theory, topologi-
cal spaces for topology and so on.

We define now an apparently comple-
tely different concept, very natural in
computer science. Denote, as usual, by
A∗ the set of words which can be for-
med by means of the alphabet A, and let
F be a (not necessarily finite) subset of
A∗. We think of F as a set of forbidden

words and may consider the set DF of
all elements of AZ which don’t contain
any of the forbidden words (this is im-
portant in physical data storage for ex-
ample). Then DF is closed and invari-
ant, i.e. a symbolic dynamical system.

Conversely, if X is a symbolic dyna-
mical system, there always exists (not
uniquely defined) a subset F ⊂ A∗ such
that X = DF .

The proofs are rather easy, but the
theorem says that symbolic dynamical
systems (a genuine concept in pure ma-
thematics) and sets of infinite texts de-
scribed by sets of forbidden words (a ge-
nuine concept in computer science) are
exactly the same thing.

W.H. Gottschalk/G.A. Hedlund: Topological dynamics.
AMS 1955.

G.A. Hedlund: Endomorphisms and automorphisms of the shift
dynamical system. Math. Systems Theory 3 (1969), 320-375.

D. Lind/B. Marcus: An introduction to symbolic dynamics and
coding. Cambridge UP 1995.

K. Schmidt: Dynamic systems of algebraic origin.
Birkhäuser 1995.
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Formal concept analysis

Let X and M be finite sets and

τ ⊂ X ×M be a relation. Then the

triple (X,M, τ) is called an inci-

dence structure or, by Wille, a formal

context. This fundamental structure

in abstract geometry can now be

used for a mathematical theory of

concepts which seems to have ma-

ny applications (the book of Bartel

elaborates in great detail applicati-

ons to the classification of molecules

in chemistry). For A ⊂ X define

A′ := {m ∈ M |aτm for all a ∈ A},

similarly for B ⊂ M let

B′ := {x ∈ X|aτm for all m ∈ B}. It

is easy to see that in this way one

obtains a Galois connection between

P(X) and P(M).
A formal concept in the con-

text (X,M, τ) is a pair (A,B) with

A ⊂ X, B ⊂ M such that A′ = B

and B′ = A.

If (A,B) and (C,D) are formal

concepts, we write A ≤ B : ⇐⇒ A ⊂
C (which is equivalent to D ⊂ B).

And now one shows that the set of

formal concepts with this partial or-

der is a complete lattice. The study

of this lattice has been called formal

concept analysis; it can be genera-

lized (e.g. to many valued and fuz-

zy contexts) and has some intriguing

applications (the booklet of Becker

is a reformulation of known formal

equivalences in algebraic geometry).

For example, perhaps one could

try to classify the topologies of

neural nets by this theory.

H. Bartel: Mathematische Methoden in der Chemie.
Spektrum 1996.

T. Becker: Formal concepts analysis and algebraic
geometry. Shaker 1999.

B. Ganter/R. Wille: Formal concept analysis.
Springer 1999.

G. Stumme/R. Wille (ed.): Begriffliche
Wissensverarbeitung. Springer 1999.

Random number generators

Sequences or tables of random numbers (or random vectors) are used in ma-

ny problems of statistics, simulation, numerical integration and cryptogra-

phy. There is still a great need for new and versatile random number genera-

tors and reliable techniques for the assessment of their properties, requiring

usually very sophisticated methods from number theory and harmonic ana-

lysis.

Let (x1, . . . , xN ) be a finite sequence of real numbers and denote by {a}
the fractional part of a real number a. We define the *-discrepancy of the

sequence by

D∗
N (x1, . . . , xN ) := sup

0<v≤1
| 1
N

N∑

n=1

(0 ≤ {xn} < v)− v|

Then for every function f : [0, 1] −→ R with finite total variation V (f) the

following inequality holds:

| 1
N

N∑

n=1

f(xn)−
1∫

0

f(u)du| ≤ V (f)D∗(x1, . . . , xN )

Once known the total variation, the error term depends therefore only on the

*-discrepancy of the sequence. But finding low-discrepancy sequences and

calculating their discrepancy is an all but trivial task.
That apparently simple si-

tuations can require attenti-

ve study is shown by two pic-

tures which show the points

(xn, xn+1) for the widely used

linear congruential generator

xn+1 = axn + b mod m. Both

generators have maximal peri-

od, but the first one is a very

bad choice when used as a ge-

x
n+1 = 33xn + 1 mod 64 x

n+1 = 37xn + 1 mod 64

nerator of random points in the plane.

L. Afflerbach/J. Lehn (ed.): Zufallszahlen und Simulationen. Teubner 1986.
M. Drmota/R. Tichy: Sequences, discrepancies and applications. SLN Math. 1651 (1997).
L. Hua/Y. Wang: Applications of number theory to numerical analysis. Springer 1981.
D. Knuth: The art of computer programming II. Addison-Wesley.
L. Kuipers/H. Niederreiter: Uniform distribution of sequences. Wiley 1974.
H. Niederreiter: Quasi-Monte Carlo methods and pseudo-random numbers. Bull. AMS 84 (1978), 957-1041.
H. Niederreiter: Random number generation and quasi-Monte Carlo methods. SIAM 1992.
H. Niederreiter/P. Shiue (ed.): Monte Carlo and quasi-Monte Carlo methods in scientific computing. Springer 1995.

Data security

Number theoretical cryptography is

very popular now. Less known is that

finite projective planes can be used

very effectively to construct reliable

security mechanisms.

A. Beutelspacher/U. Rosenbaum: Projektive Geometrie.
Vieweg 1992.

Optimization theory

In the last twenty years optimizati-

on theory has become a very diffi-

cult field of mathematics, spanning

from graph theory, convex geometry,

4-dimensional topology and the geo-

metry of numbers to constraint logic

programming, so that it is difficult

for small teams of 2-3 persons, which

are typical in Italian universities, to

compete with the large groups of 50

people in other countries.

C. Großmann/J. Terno: Numerik der Optimierung.
Teubner 1997.

P. Gruber/J. Wills (ed.): Handbook of convex geometry.
2 volumes. North-Holland 1993.

A. Joereßen/H. Sebastian: Problemlösung mit Modellen und
Algorithmen. Teubner 1998.

D. Jungnickel: Graphen, Netzwerke und Algorithmen.
Bibl. Inst. 1994.

K. Marriott/P. Stuckey: Programming with constraints.
MIT Press 1998.

A. Schrijver: Theory of linear and integer programming.
Wiley 1990.

Functional programming

Few, if any, mathematicians work

in functional programming, which

could be a very attractive mathe-

matical part of computer science. A

computer program can be conside-

red as transforming an input x in

an output y, i.e. as a mapping. In

traditional programming languages

this mapping is described by algo-

rithms governed by case distincti-

on and iteration. In functional pro-

gramming languages this is achie-

ved by describing the mapping as

a composition of simpler mappings,

exactly as mathematicians do when

they say that ex
2 cos (x+y) as a functi-

on of x and y can be considered as

a composition of simpler functions,

viz. (x, y) 7→ x+ y, (x, y) 7→ xy, cos,
x 7→ x2, x 7→ ex. In this sense al-

gorithms are replaced by mathema-

tical constructions, often leading to

clean programs and easy mathema-

tical proofs of correctness.

M. Erwig: Grundlagen funktioneller Programmierung.
Oldenbourg 1999.

L. Paulson: ML for the working programmer. Cambridge UP 1996.
P. Pepper: Funktionale Programmierung. Springer 1999.
P. Thiemann: Grundlagen der funktionellen Programmierung.

Teubner 1994.
J. Ullman: Elements of ML programming. Prentice Hall 1998.
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Mathematical methods of bioinformatics

Bioinformatics is a mainly mathe-
matical discipline, which provides
algorithms and statistical techni-
ques for the comparison of DNA
sequences, the prediction of the
spatial structures of proteins from
their sequence of amino acids (e.g.
via logic programming), phylogene-
tic trees, the assessment of pro-
bable biochemical or pharmacologi-
cal activities. Methods of linguistics
could, perhaps in an abstract ma-
thematical form, be applied to the
study of genes and amino acid se-
quences.

The complete availability of the
genome of man and many other spe-
cies will probably initiate a new era
in biochemistry and pharmacology;
it is significant than one of the most
renowned leaders of human geno-
me informatics is Eric Lander, once
a mathematician working in combi-
natorial theory.

The comparison of genomes can
allow pharmacologists to find genes
for enzymes necessary to a parasi-
te or other pathogenic agent, but
not to man, and then it can be pos-
sible to develop drugs which inhi-

bit that enzyme, though being in-
nocent to man. A first famous ex-
ample is the recent discovery of
new antimalarial drugs by Jomaa
and coll. who found a mevalonate-
independent pathway of the bio-
synthesis of isoprenoids (as sterols
and ubiquinons) and therefore, sin-
ce in all mammals these molecules
are synthesized on the mevalonate
pathway, a target for new drugs.

H. Bandelt/A. Dress: Reconstructing the shape of a
tree from observed dissimilarity data.
Adv. Appl. Math. 7 (1986), 309-343.

H. Bandelt/A. Dress: A canonical decomposition
theory for metrics on a finite set.
Adv. Math. 92 (1992), 47-105.

J. Dopazo/A. Dress/A. Haeseler: Split decomposition -
a technique to analyze viral evolution.
Proc. Nat. Ac. Sci. USA 90 (1993), 10320-10324.

R. Hofesẗadt (ed.): Molekulare Bioinformatik.
Shaker 1998.

R. Hofesẗadt (ed.): Bioinformatik 2000.
Biocom AG 2000.

R. Hofesẗadt/H. Lim (ed.): Molecular bioinformatics.
Shaker 1997.

H. Jomaa a.o.: Inhibitors of the nonmevalonate
pathway of isoprenoid biosynthesis as antimalaria
drugs. Science 3 September 1999, 1573-1576.

D. Sankoff/J. Kruskal (ed.): Time warps, string edits,
and macromolecules. Addison-Wesley 1983.

S. Schulze-Kremer: Molecular bioinformatics.
De Gruyter 1996.

J. Setubal/J. Meidanis: Introduction to computational
molecular biology. PWS 1997.

M. Waterman: Introduction to computational biology.
Chapman & Hall 1996.

Computational geometry and image processing

A very popular field with applications in medicine, geography, quality
control and molecular modelling, involving many people.

H. Bungartz/M. Griebel/C. Zenger: Einführung in die Computergraphik. Vieweg 1996.
H. Edelsbrunner: Algorithms in combinatorial geometry. Springer1987.
G. Farin: Curves and surfaces for computer aided geometric design. Academic Press 1993.
J. Foley a.o: Computer graphics. Addison-Wesley1996.
H. Handels: Medizinische Bildverarbeitung. Teubner 2000.
H. Hejmans: Morphological image operators. Academic Press 1994.
A. Janser/W. Luther/W. Otten: Computergraphik und Bildverarbeitung. Vieweg 1996.
J. Serra: Image analysis and mathematical morphology. AcademicPress 1988.

Geomathematics

This is an emerging, beautiful, difficult and not overcrowded field of applied
mathematics. We give here only a bibliography and recommend the home
page at www.mathematik.uni-kl.de/ wwwgeo/ of the strong geomathema-
tics group in Kaiserslautern, from which we list some of the many chal-
lenging topics they study: special functions of mathematical geophysics,
spherical harmonics, pseudodifferential operators of mathematical geode-
sy, multivariate approximation methods, applications of splines, wavelets,
finite elements in mathematical geodesy, determination of the gravitational
field of the Earth, deformation analysis of the Earth’s surface, atmospheric
refraction effects, determination of the magnetic field of the Earth via sa-
tellite data and vectorial wavelets.

H. Engl/A. Louis/W. Rundell (ed.): Inverse problems in geophysical applications. SIAM 1997.
W. Freeden/T. Gervens/M. Schreiner: Constructive approximationon the sphere. With applications to geomathematics.

Oxford UP 1998.
W. Freeden/U. Windheuser: Combined spherical harmonic and wavelet expansion - a future concept in Earth’s

gravitational determination. Appl. Comp. Harmon. Anal. 4 (1997), 1-37.
E. Groten: Geodesy and the Earth’s gravity field. 2 volumes. Dümmler 1980.
S. Heitz: Coordinates in geodesy. Springer 1988.
L. Hörmander: The boundary problems of physical geodesy. Arch. rat. Mech. Anal. 62 (1976), 1-52.
M. Hotine/J. Zund: Differential geodesy. Springer 1991. A collection of papers by Hotine, commented by Zund.
A. Marussi: Intrinsic geodesy. Springer 1985.
J. Zund: Foundations of differential geodesy. Springer 1994.

Statistics

It would be easy for mathematicians to
claim that statistics is, especially in its
foundations, a mathematical discipline. Of
course a statistician is destinated to beco-
me an applied mathematician and has to ac-
quire knowledge in his fields of application,
but the basic courses on probability theory,
harmonic analysis, stochastic processes and
time series, combinatorial theory (for skills
in elementary probability theory and e.g. for
the planning of experiments) are mathema-
tics courses which should be taught in a ma-
thematics department. But “in mathematics

... research appears to be disproportionally

driven by the internal development of ma-

thematics itself ... Most statisticians under-

stand that applied research is applied to so-

mething; this is not traditional usage in ma-

thematical circles.”, as Moore/Cobb remark.
Largely unexplored is the geometry of mul-
tidimensional statistics; cluster analysis is
another important field where mathemati-
cians could more participate.

There are so many applications of stati-
stics, in medicine, bioinformatics, pharma-
cology, financial mathematics and lingui-
stics, that statistics can attract many ab-
stractly inclined students which should be
in the first part of their education mathe-
maticians.

In some countries the situation is diffe-
rent. In his book on medical statistics Horst
Fassl complains several times about mathe-
maticians in Germany being involved even
too much in the planning and organizati-
on of medical activities; in fact, in Germany
every university has a big institute of me-
dical informatics or medical statistics with
20-50 people, many of them being mathe-
maticians.

H. Bock: Automatische Klassifikation. Vandenhoeck 1974.
R. Farrell: Multivariate calculation. Springer 1985.
H. Fassl: Einf̈uhrung in die medizinische Statistik. UTB 1999.
D. Moore/G. Cobb: Statistics and mathematics - tension and

cooperation. Am. Math. Monthly 107 (2000), 615-630.

Lindenmayer systems

Lindenmayer systems can be considered as
a part of symbolic dynamics. Start with the
word 0 and rewrite this according to the ru-
les 0−→ 01 and 1−→ 10 to obtain along 0−→

01−→ 0110−→ 01101001 −→ ... the famous
Morse sequence.

Lindenmayer, a botanist, used such rules
to model the development of plants, by in-
terpreting the letters in such evolving se-
quences of words as structural elements
of plants. One obtains today surprisingly
realistic pictures. Also many fractals can
be constructed this way. Modifications can
be introduced for example via genetic algo-
rithms.

O. Deussen/B. Lintermann: Computerpflanzen.
Spektrum der Wiss. Februar 2001, 58-65.

C. Jacob: Principia evolvica. dpunkt 1997.
P. Prusinkiewicz/A. Lindenmayer: The algorithmic beauty of plants.

Springer 1990.
G. Rozenberg/A. Salomaa: The mathematical theory of L-systems.

Academic Press 1980.
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Mathematical methods in chemistry

This is a vast field, which is “cen-

tral to rational drug design, ... con-

tributes to the selection and synthe-

sis of new materials, and ... guides

the design of catalysts”, as the Na-
tional Academy report (150 pages)
states, still in many parts unexplo-
red. “In contrast [to physics], the-

re has been relatively little interacti-

on between mathematicians and che-

mists ... a large number of diverse

areas in chemistry ... would benefit

from input from mathematicians. A

small subset of these areas includes:

strategies [via statistical prediction]

for the design [and assessment] of

new drugs and agricultural chemi-

cals, development of molecular dyna-

mics algorithms, optimization pro-

blems, folding of proteins, transport

across biological membranes, coiling

and uncoiling of DNA, the structure

of crystals and quasicrystals, the re-

lationship between quantum mecha-

nics and simpler approximate mo-

dels, and a wide range of numeri-

cal analysis problems”, writes Geor-
ge Hagedorn.

Other research areas in which
mathematicians could contribute to
chemistry mentioned in the NAS re-
port are distance geometry (applied
to the study of the 3-dimensional
structure of molecules, for example
in docking problems), topology and
graph theory (with many old and
new applications, e.g. to the theory
of fullerenes, to the representation
of chemical reactions, or to the orga-
nization of the chemical literature or
of chemical databases), connections
with number theory via quasicry-
stals, combinatorics, molecular di-
versity and combinatorial chemistry
in drug discovery (including cluster
analysis and genetic algorithms),
quantitative structure-activity rela-
tionship and similar methods, fast
Fourier transform methods for ap-
plications in molecular spectrosco-
py, and the many aspects of com-
putational quantum chemistry (in-
cluding quantum Monte Carlo solu-
tions of the Schrödinger equation,
where the statistical properties of
pseudorandom number generators
are needed).

It may be interesting that the
book by Bartel is almost entire-
ly dedicated to methods from dis-
crete mathematics, usually not so
well known to chemists: sets, map-
pings and relations; graph theory;
algebraic structures (mainly groups)

and orders with an exposition of
the algebraic structure of quantum
theory; formal concept analysis; clu-
ster analysis.

“Neither the chemist nor the ma-

thematician is generally the optimal

person to construct a mathematical

model, as the model by its very na-

ture lies at the interface between

theory and observation. To build the

model, an iterative process of refine-

ment is required ... It is exactly this

need for iterative model construction

that may motivate the collaborati-

on of mathematicians and chemists,

against the self-referential and con-

servative tendencies of each discipli-

ne ... although theoretical chemists

understand sophisticated mathema-

tics ... they have typically not invol-

ved mathematicians directly ... theo-

retical chemists have become accu-

stomed to self-reliance in mathema-

tics ... both fields are affected by

the value system of academia ... For

mathematicians, the potential career

damage of collaboration rises when

it involves work in a field seen as pe-

ripheral to mathematics. In some in-

stances, interdisciplinary work may

be regarded by one’s mathematical

colleages as not real mathematics

or as less valuable than traditional

mathematics ... For both fields, the

difficulty of interdisciplinary colla-

boration is exacerbated by the lack

of a well-established network of con-

tacts between mathematicians and

chemists ... chemists may regard ma-

thematicians as unapproachable or

uninterested in chemistry problems;

mathematicians may not realize that

chemistry problems contain intere-

sting and novel mathematics ... Part

of the gap specifically between ma-

thematics and chemistry can be ex-

plained by long-standing pedagogi-

cal practices in mathematics. Much

of classical applied mathematics is

based on constructions associated

with mechanics and physics: every

student of mathematics studies the

heat equation, elastic rods, electri-

cal networks, and fluid flow. Howe-

ver, no problems explicitly associa-

ted with chemistry are widely taught

to or recognized by mathematicians.”

(NAS report)

H. Bartel: Mathematische Methoden in der Chemie.
Spektrum 1996.

G. Hagedorn: Crossing the interface between chemistry
and mathematics. Notices AMS March 1996, 297-299.

National Academy of Sciences: Mathematical
challenges from theoretical/computational chemistry.
National Academy Press 1995.
Available at www.nap.edu/readingroom/books/mctcc/.

Caesars in the villages?

In his book on genes and languages
Cavalli-Sforza comments on one of Leo-
pardi’s Operette morali which cites Plut-
arch’s report on Caesar saying to his offi-
cers, while crossing the Alps in the jour-
ney to his province and passing a small
village of barbarians, that he had rat-
her be the first man among those fellows
than the second man in Rome. Let us ab-
use this famous incident to place some
philosophy on the difference between po-
liticians and scientists.

In fact, the assertion referred to is
so typical for politically inclined people,
that the question “Would you prefer to be

the first man in a village or in a facto-

ry etc. or rather to participate in a ge-

neral human enterprise as a second or

third man, without commanding at all,

but only warranted to be allowed to con-

tribute to the enterprise?” could be a va-
lid test to discriminate among similarly
talented and ambitioned people between
politicians and scientists.

L. Cavalli-Sforza: G̀enes, peuples et langues. Odile Jacob 1996.

Teaching mathematics

There are different levels and diffe-
rent ages at which mathematics can be
taught, and probably the most important
technique in teaching mathematics is to
bear in mind the needs, ambitions, pos-
sibilities and foreknowledges of the stu-
dents. Teaching to 10 year old boys must
be different from teaching in technical
high schools, and at the university level
teaching to mathematics or physics stu-
dents shall be different from courses to
economists or biologists.

Also for mathematics students at the
university a good organization is import-
ant. One should not underestimate the
students, one should also attract good
students to mathematics. This requires
a careful, but versatile and differentia-
ted planning of curricula, effective exer-
cise assignments and interesting topics.

Beauty is not enough today, if this
means that occupying one’s time with
abstract mathematics is beautiful; the-
re are too many other much more beau-
tiful distractions for young people. At-
tractiveness must therefore come from
the students aquiring applicable know-
ledges which give them self-confidence to
compete with engineering and computer
science students, with openings to future
interdisciplinary activities.

For a round table Josef Eschgfäller (Univ. of Ferrara)


