7. Il polinomio minimale di una matrice

Situazione 7.1. Sia $A \in \mathbb{C}_n^n$.

Lemma 7.2. U sia un'algebra su \mathbb{C} con elemento neutro 1_U .

Per
$$f = a_0 x^n + a_1 x^{n+1} + \cdots + a_n \in \mathbb{C}[x]$$
 ed $u \in U$ poniamo

$$f(u) := a_0 u^n + a_1 u^{n+1} + \dots + a_n 1_U.$$

Allora per ogni $u \in U$, l'applicazione $\bigcap_f f(u) : \mathbb{C}[x] \to U$ è un omomorfismo di \mathbb{C} -algebre.

Abbiamo quindi $f(1) = 1_U$ e, per $f, g \in \mathbb{C}[x]$ e $\alpha \in \mathbb{C}$, le relazioni

$$(f+g)(u) = f(u) + g(u)$$
$$(\alpha f)(u) = \alpha f(u)$$
$$(f \cdot g)(u) = f(u) \cdot g(u)$$

Nel seguito useremo questi risultati per $U = \mathbb{C}_n^n$.

<u>Dimostrazione.</u> Dimostriamo solo l'ultima relazione, in quanto le altre sono evidenti.

Siano
$$f=a_0x^n+a_1x^{n+1}+\cdots+a_n,$$
 $g=b_0x^m+b_1x^{m+1}+\cdots+b_m$ ed $h:=f\cdot g.$ Allora $h=\sum_{k=0}^{n+m}c_kx^k$ con $c_k=\sum_{j=0}^ka_jb_{n-j}$ per ogni $k.$

Ma questi sono proprio i coefficienti che si ottengono raccogliendo i coefficienti delle potenze di x con lo stesso esponente nel prodotto espanso $(a_0x^n+a_1x^{n-1}+\cdots+a_n)(b_0x^m+b_1x^{m-1}+\cdots+b_m)$ ed è quindi

chiaro che, sostituendo x con u, si ottiene proprio $h(u) = \sum_{k=0}^{n+m} c_k u^k$.

Corollario 7.3. Siano
$$\lambda_1, \ldots, \lambda_n \in \mathbb{C}$$
 ed $f = (x - \lambda_1) \cdots (x - \lambda_n)$. Allora $f(A) = (A - \lambda_1 \delta) \cdots (A - \lambda_n \delta)$.

Definizione 7.4. Se calcoliamo l'espressione $\det(x\delta - A) =: \mathcal{P}_A$ in $\mathbb{C}[x]$, otteniamo un polinomio monico in $\mathbb{C}[x]$ che si chiama il *polinomio caratteristico* di A.

Definizione 7.5. Sia $B \in \mathbb{C}_n^n$. Le matrici A e B si dicono simili, se esiste $T \in GL(n,U)$ tale che $B = T^{-1}AT$.

Proposizione 7.6. Matrici simili hanno lo stesso polinomio caratteristico.

Dimostrazione. Segue immediatamente dalla definizione.

Teorema 7.7. Sia $\lambda \in \mathbb{C}$. Le condizioni (1) e (2) sono equivalenti tra di loro e, quando $n \geq 2$, equivalenti alla (3):

- (1) $\lambda \stackrel{.}{e}$ un autovalore di A.
- (2) λ è radice del polinomio caratteristico di A: $\mathcal{P}_A(\lambda) = 0$.
- (3) Esiste una matrice $B \in \mathbb{C}_{n-1}^{n-1}$ tale che A è simile a una matrice della forma $\begin{pmatrix} \lambda & * \\ 0 & B \end{pmatrix}$. In questo caso $\mathcal{P}_A = (x \lambda) \cdot \mathcal{P}_B$.

Dimostrazione. Corsi di geometria oppure Koecher, pag.234.

Proposizione 7.8. I sia un ideale (possibilmente improprio) di $\mathbb{C}[x]$. Se $I \neq 0$, esiste un unico polinomio monico $p \in \mathbb{C}[x]$ che genera I.

Il grado di p è il più piccolo grado di un polinomio non nullo contenuto in I.

Dimostrazione. Corso di algebra.

Definizione 7.9.
$$\mathbb{C}[A] := \{f(A) \mid f \in \mathbb{C}[x]\}.$$

È immediato che $\mathbb{C}[A]$ è una sotto- \mathbb{C} -algebra di \mathbb{C}_n^n .

Lemma 7.10. Esiste un polinomio $f \in \mathbb{C}[x]$ con $f \neq 0$ ed f(A) = 0.

Dimostrazione. Siccome $\mathbb{C}[A]$ è un sottospazio vettoriale di \mathbb{C}_n^n , sicuramente $\dim_{\mathbb{C}}\mathbb{C}_n^n \leq n^2 =: s$. Ciò significa che le s+1 matrici $\delta, A, A^2, \ldots, A^s$ sono linearmente dipendenti, perciò esistono $a_0, a_1, \ldots, a_s \in \mathbb{C}$ non tutti nulli, tali che $a_0\delta + a_1A + a_2A^2 + \ldots + a_sA^s = 0$. Se poniamo $f := a_0 + a_1x + \ldots + a_sx^s$ abbiamo trovato un polinomio $f \neq 0$ con f(A) = 0.

Definizione 7.11. Dal lemma 7.2 è immediato che l'insieme $\{f \in \mathbb{C}[x] \mid f(A) = 0\}$ è un ideale (possibilmente improprio) di $\mathbb{C}[x]$.

Dal lemma 7.10 sappiamo che questo ideale è $\neq 0$, quindi per la proposizione 7.8 esiste un unico polinomio monico $\mathcal{M}_A \in \mathbb{C}[x]$ che genera questo ideale.

Per ogni $f \in \mathbb{C}[x]$ si ha quindif(A) = 0 se e solo se esiste $g \in \mathbb{C}[x]$ con $f = g \cdot \mathcal{M}_A$. Il grado di \mathcal{M}_A è allo stesso tempo il più piccolo grado di un polinomio $\neq 0$ che annulla A.

 \mathcal{M}_A si chiama il *polinomio minimale* di A. Per definizione $\mathcal{M}_A \neq 0$.

Corollario 7.12. m sia il grado di \mathcal{M}_A . Allora:

- (1) Le matrici $\delta, A, A^2, ..., A^{m-1}$ formano una base di $\mathbb{C}[A]$.
- (2) $\dim_{\mathbb{C}} \mathbb{C}[A] = m$.

<u>Dimostrazione.</u> Dal lemma 7.10 sappiamo che $\mathcal{M}_A \neq 0$, quindi \mathcal{M}_A è della forma $\mathcal{M}_A = x^m + a_1 x^{m-1} + \ldots + a_m$.

Abbiamo perciò $A^m = -a_1 A^{m-1} - \ldots - a_m \delta$ e ciò implica che $\delta, A, A^2, \ldots, A^{m-1}$ generano lo spazio vettoriale $\mathbb{C}[A]$.

Se queste matrici fossero linearmente dipendenti, ad esempio $b_0\delta+b_1A+\ldots+b_{m-1}A^{m-1}=0$ con i coefficienti b_j non tutti nulli, allora con $g:=b_0+b_1x+\ldots+b_{m-1}x^{m-1}$ avremmo trovato un polinomio $g\neq 0$ con g(A)=0 e grado minore di m, in contraddizione alla prop.7.8.

Proposizione 7.13. A è invertibile se e solo se $\mathcal{M}_A(0) \neq 0$.

In tal caso $A^{-1} \in \mathbb{C}[A]$.

<u>Dimostrazione.</u> Sia di nuovo $\mathcal{M}_A=x^m+a_1x^{m-1}+\ldots+a_m$. Allora $A^m+a_1A^{m-1}+\ldots+a_{m-1}A=-a_m\delta$ e quindi $AB=-a_m\delta$ con $B:=A^{m-1}+a_1A^{m-2}+\ldots+a_{m-1}\delta$. Per il corollario 7.12 $B\neq 0$.

Si noti che $\mathcal{M}_A(0) = a_m$.

- (1) Sia A invertibile. Allora $-a_mA^{-1} = B \neq 0$ e quindi $a_m \neq 0$.
- (2) Sia $a_m \neq 0$. Allora $A^{-1} = -\frac{1}{a_m} B \in \mathbb{C}[A]$.

Esempio 7.14. Assumiamo di sapere che $\mathcal{M}_A = x^3 + 2x + 5$. Allora

$$-5\delta = A^3 + 2A$$
, ovvero $A(A^2 + 2\delta) = -5\delta$

e quindi

$$A^{-1} = -\frac{1}{5}(A^2 + 2\delta) \in \mathbb{C}[A].$$

Corollario 7.15. A sia invertibile. Allora esiste $f \in \mathbb{C}[x]$ con $f(A) = \delta$ ed f(0) = 0.

<u>Dimostrazione.</u> Per la proposizione 7.13 esiste $g \in \mathbb{C}[x]$ con $A^{-1} = g(A)$. Perciò $A \cdot g(A) = \delta$ e se poniamo $f = x \cdot g$, allora $f(A) = \delta$ ed f(0) = 0.

Esempio 7.16. Nell'esempio 7.14 possiamo porre

$$f = -\frac{1}{5}x(x^2 + 2) = -\frac{1}{5}(x^3 + 2).$$

Infatti allora f(0)=0 ed $f(A)=-\frac{1}{5}(A^3+2A)=-\frac{1}{5}(-5\delta)=\delta.$

Osservazione 7.17. Siano $f \in \mathbb{C}[x]$ e $T \in GL(n, \mathbb{C})$.

Allora
$$f(T^{-1}AT) = f(A)$$
.

<u>Dimostrazione.</u> È sufficiente osservare che $(T^{-1}AT)^k = T^{-1}A^kT$ per ogni $k \in \mathbb{N}$.

Corollario 7.18. Sia, anche, $B \in \mathbb{C}_n^n$. Se le matrici A e B sono simili, allora $\mathcal{M}_A = \mathcal{M}_B$.

Lemma 7.19. Siano $\lambda \in \mathbb{C}$ e $v \in \mathbb{C}^n$ tali che $Av = \lambda v$. Per ogni $f \in \mathbb{C}[x]$ allora $f(A)v = f(\lambda)v$.

<u>Dimostrazione.</u> Infatti l'ipotesi implica $A^k v = \lambda^k v$ per ogni $k \in \mathbb{N}$. Per linearità si ottiene l'enunciato.

Teorema 7.20. *Per* $\lambda \in \mathbb{C}$ *sono equivalenti:*

- (1) λ è autovalore di A.
- (2) λ è radice del polinomio caratteristico di A: $\mathcal{P}_A(\lambda) = 0$.
- (3) λ è radice del polinomio minimale di A: $\mathcal{M}_A(\lambda) = 0$.

Dimostrazione.

- $(1) \iff (2)$: Teorema 7.7.
- $(1) \Rightarrow (3): \lambda$ sia un autovalore di A. Allora esiste $v \in \mathbb{C}^n \setminus 0$ tale che $Av = \lambda v$. Dal lemma 7.9 segue che $\mathcal{M}_A(\lambda)v = \mathcal{M}_A(A)v = 0$ e quindi $\mathcal{M}_A(\lambda) = 0$ perché $v \neq 0$.
- $(3)\Rightarrow (1): \mathrm{Sia}\ \mathcal{M}_A(\lambda)=0.$ Allora esiste $f\in\mathbb{C}[x]$ tale che $\mathcal{M}_A=(x-\lambda)f.$ Siccome $f\neq 0$ e grado $f<\mathrm{grado}\ \mathcal{M}_A$, la minimalità di \mathcal{M}_A implica $f(A)\neq 0.$ Perciò esiste un vettore $w\in\mathbb{C}^n$ tale che $v:=f(A)w\neq 0.$

Usando il lemma 7.2 abbiamo adesso

$$Av - \lambda v = Af(A)w - \lambda f(A)w = (A - \lambda \delta)f(A)w = \mathcal{M}_A(A)w = 0.$$

Siccome $v \neq 0$, ciò mostra che λ è un autovalore di A.

Corollario 7.21. Sia $f \in \mathbb{C}[x]$ con f(A) = 0. Allora $f(\lambda) = 0$ per ogni autovalore λ di A.

Teorema 7.22 (teorema di Cayley-Hamilton). $\mathcal{P}_A(A) = 0$.

<u>Dimostrazione.</u> Corsi di geometria oppure Mondini, pagg. 68-70.

Corollario 7.23. Il polinomio minimale \mathcal{M}_A divide il polinomio caratteristico \mathcal{P}_A .

Nota 7.24. Dal teorema 7.20 e dal corollario 7.23 vediamo che, se il polinomio caratteristico di A possiede la forma

$$\mathcal{P}_A = (x - \lambda_1)^{n_1} \cdots (x - \lambda_s)^{n_s}$$

con i λ_k distinti e gli esponenti $n_k \geq 1$, allora il polinomio minimale \mathcal{M}_A è della forma

$$\mathcal{M}_A = (x - \lambda_1)^{m_1} \cdots (x - \lambda_s)^{m_s}$$

con $1 \le m_k \le n_k$ per ogni k.

Se n non è troppo grande e se gli autovalori λ_k sono noti con le loro molteplicità n_k (come accade nel caso di una matrice triangolare), possiamo così trovare il polinomio minimale tra i polinomi della forma $(x-\lambda_1)^{r_1}\cdots(x-\lambda_s)^{r_s}$ con $1\leq r_k\leq n_k$ per ogni k, partendo con $r_1=\ldots=r_s=1$ e aumentando gli esponenti, fino a quando troviamo un polinomio che annulla A.

Assumiamo ad esempio che $\mathcal{P}_A=(x-\lambda)^3(x-\mu)^2(x-\nu)$ con λ,μ,ν distinti.

Allora proviamo, in questo ordine, i sei polinomi

$$f_1 = (x - \lambda)(x - \mu)(x - \nu)$$

$$f_2 = (x - \lambda)^2(x - \mu)(x - \nu)$$

$$f_3 = (x - \lambda)(x - \mu)^2(x - \nu)$$

$$f_4 = (x - \lambda)^3(x - \mu)(x - \nu)$$

$$f_5 = (x - \lambda)^2(x - \mu)^2(x - \nu)$$

$$f_6 = (x - \lambda)^3(x - \mu)^2(x - \nu)$$

fino a quando $f_j(A)=0.$ Possiamo eseguire l'algoritmo formando in successione

$$B_1 = (A - \lambda \delta)(A - \mu \delta)(A - \nu \delta)$$

$$B_2 = B_1(A - \lambda \delta)$$

$$B_3 = B_1(A - \mu \delta)$$

$$B_4 = B_2(A - \lambda \delta)$$

$$B_5 = B_2(A - \mu \delta)$$

$$B_6 = B_5(A - \lambda \delta)$$

fino a quando $B_j = 0$.