10. Interpolazione di Hermite

Situazione 10.1. Siano $\lambda_1, \ldots, \lambda_s \in \mathbb{C}$ tutti distinti ed $m_1, \ldots, m_s \in \mathbb{N} + 1$. Sia $m := m_1 + \ldots + m_s$.

Lemma 10.2. Siano $f \in \mathbb{C}[x]$, $\alpha \in \mathbb{C}$ e $p \in \mathbb{N}$. Allora α è uno zero di molteplicità (esatta) p di f se e solo se $f^{(j)}(\alpha) = 0$ per ogni $j = 0, \ldots, p-1$ ed $f^{(p)}(\alpha) \neq 0$.

Dimostrazione. Corso di Algebra oppure Scheja/Storch, pag. 109.

Corollario 10.3. Sia $f \in \mathbb{C}[x]$ un polinomio di grado < m tale che per ogni k = 1, ..., s si abbia $f^{(j)}(\lambda_k) = 0$ per ogni $j = 0, ..., m_k - 1$. Allora f = 0.

<u>Dimostrazione.</u> MANCA

Teorema 10.4. Per ogni k = 1, ..., s ed ogni $j = 0, ..., m_k - 1$ sia dato un numero complesso v_{ij} . Allora esiste esattamente un polinomio $H \in \mathbb{C}[x]$ di grado < m tale che per ogni k = 1, ..., s si abbia $H^{(j)}(\lambda_j) = v_{kj}$ per ogni $j = 0, ..., m_k - 1$.

Dimostrazione. MANCA

Definizione 10.5. Il polinomio H nella proposizione 10.7 si chiama il polinomio di interpolazione di Hermite rispetto al problema di interpolazione dato.

Per indicare i parametri del problema di interpolazione, denotiamo ${\cal H}$ con

$$H[\lambda_1:(v_{10},\ldots,v_{1,m_1-1}),\ldots,\lambda_s:(v_{s0},\ldots,v_{s,m_s-1})]$$

Abbreviando $v_k:=(v_{k0},\ldots,v_{k,m_k-1})$ per ogni k, possiamo anche scrivere $H=H[\lambda_1:v_1,\ldots,\lambda_s:v_s]$. Talvolta, in algoritmi ricorsivi, ammettiamo anche che uno dei vettori v_k sia il vettore vuoto, cioè che $v_k=()$, ponendo in tal caso

$$H[\lambda_1: v_1, \dots, \lambda_s: v_s] := H[\lambda_1: v_1, \dots, \lambda_{k-1}: v_{k-1}, \lambda_{k+1}: v_{k+1}, \dots, \lambda_s: v_s].$$

Per $v_k = (v_{k0}, ..., v_{kt})$ con t > 0 poniamo infine $v_k^- := (v_{k0}, ..., v_{k,t-1})$.

Osservazione 10.6. Diamo adesso due dimostrazioni costruttive del teorema 10.4. Nella prima, basata sul teorema cinese del resto, seguiamo Gathen/Gerhard, pagg. 102-105 e 111-113, nella seconda esponiamo, in modo leggermente modificato, lo schema alle differenze che si trova in Stoer, pagg. 44-47, e Deuflhard/Hohmann, pagg. 207-211.

Lemma 10.7 (teorema cinese dei resti). A sia un anello euclideo ed $a_1, \ldots, a_s \in A$ tale che $mcd(a_i, a_j) = 1$ per ogni $i \neq j$.

Sia $b_i := a_1 \cdots \widehat{a_i} \cdots a_s$ (con la notazione introdotta nella definizione 9.6) per ogni i. Per ogni i allora $mcd(a_i, b_i) = 1$ e quindi esistono $\alpha_i, \beta_i \in A$ tali che $\alpha_i a_i + \beta_i b_i = 1$. Si noti che ciò implica ($\beta_i b_i = 1$, in A/a_i),

mentre è chiaro che $(\beta_i b_i = 0$, in $A/a_j)$ per $j \neq i$ perché in tal caso $b_i = a_1 \cdots \widehat{a_i} \cdots a_j \cdots a_s$ (oppure $b_i = a_1 \cdots a_j \cdots \widehat{a_i} \cdots a_s$) è un multiplo di a_j .

Siano adesso dati $c_1, \ldots, c_s \in A$. Se poniamo $c := \beta_1 b_1 c_1 + \ldots + \beta_s b_s c_s$, allora $(c = c_i, in A/a_i)$ per ogni $i = 1, \ldots, s$.

Non è difficile (è per noi irrilevante) dimostrare che c è univocamente determinato dal modulo $a_1 \cdots a_s$.

Osservazione 10.8. Sia $H \in \mathbb{C}[x]$ come nel teorema 10.4. Allora H possiede per ogni $k = 1, \ldots, s$ uno sviluppo di Taylor

$$H = H(\lambda_k) + H'(\lambda_k)(x - \lambda_k) + \dots + \frac{H^{(m_k - 1)}(\lambda_k)}{(m_k - 1)!}(x - \lambda_k)^{m_k - 1} + \dots =$$

$$= \underbrace{v_{k0} + v_{k1}(x - \lambda_k) + \dots + \frac{v_{k,m_k - 1}}{(m_k - 1)!}(x - \lambda_k)^{m_k - 1}}_{=:H_k} + \dots$$

e quindi

$$(H = H_k, \text{ in } \mathbb{C}[x]/(x - \lambda_k)^{m_k - 1})$$
 (*)

Siccome i polinomi $(x - \lambda_i)^{m_i}$ sono a due a due relativamente primi, dal lemma 10.8 vediamo che H è univocamente determinato dalle relazioni (*).

Osservazione 10.9. Dal punto di vista numerico forse più trasparente è la tecnica del calcolo delle differenze che esponiamo adesso.

Lemma 10.10. Nelle ipotesi e con le notazioni della definizione 10.5 siano $i \neq l$ e

$$F := H[\lambda_1 : v_1, \dots, \lambda_i : v_i^-, \dots, \lambda_s : v_s]$$
$$G := H[\lambda_1 : v_1, \dots, \lambda_l : v_l^-, \dots, \lambda_s : v_s].$$

Allora

$$H = \frac{x - \lambda_i}{\lambda_l - \lambda_i} F + \frac{x - \lambda_l}{\lambda_i - \lambda_l} G$$

Dimostrazione. MANCA

Osservazione 10.11. Per s=1 il polinomio di interpolazione di Hermite coincide con lo sviluppo di Taylor:

$$H[\lambda_1:(v_{10},\ldots,v_{1,m_1-1})] = \sum_{j=0}^{m_1-1} v_{1j} \frac{(x-\lambda_1)^j}{j!}$$

Dimostrazione.?

Nota 10.12. Otteniamo così un semplice algoritmo ricorsivo per il calcolo del polinomio di interpolazione di Hermite:

Per s=1 utilizziamo il lemma 10.11, altrimenti riduciamo il grado del problema mediante il lemma 10.10.

Soprattutto nei conti a mano si può accorciare l'algoritmo utilizzando che $H[\lambda_1:(v_10),\ldots,\lambda_s:(v_{s0})]=v_{10}L_1+\ldots+v_{s0}L_s$ nella notazione della osservazione 9.7.

Esempio 10.13. Calcoliamo H := H[1:(3), 2:(7,1)]. MANCA

Esempio 10.14. Calcoliamo H := H[1:(3,4), 0:(6,2,10)]. MANCA

Nota 10.15. Possiamo realizzare l'algoritmo indicato nella nota 10.12 in Python mediante le seguenti funzioni che utilizzano il modulo swiginac. MANCA

Nota 10.16. Nelle ipotesi e con le notazioni della definizione 10.5 denotiamo con $\Delta[\lambda_1:v_1,\ldots,\lambda_s:v_s]$ il coefficiente della potenza massimale formale, cioè di x^{m-1} , in $H[\lambda_1:v_1,\ldots,\lambda_s:v_s]$.

Scegliamo questa notazione perché questi coefficienti corrispondono a uno schema alle differenze che deriva dal lemma 10.10, come vediamo adesso.

Elenchiamo inoltre le condizioni $H^{(0)}(\lambda_1)=v_{10},\ldots,H^{(m_1-1)}(\lambda_1)=v_{1,m_1-1},$ $H^{(0)}(\lambda_2)=v_{20},\ldots$ nell'ordine indicato e denotiamo, per $i=0,\ldots,m-1$, con $H[\lambda_1:v_1,\ldots,\lambda_s:v_s]_{[i]}$ il polinomio di interpolazione di Hermite che corrisponde alle prime i+1 condizioni, in modo analogo sia definito $\Delta[\lambda_1:v_1,\ldots,\lambda_s:v_s]_{[i]}$.

In particolare $H[\lambda_1:v_1,\ldots,\lambda_s:v_s]_{[0]}=\Delta[\lambda_1:v_1,\ldots,\lambda_s:v_s]_{[0]}=v_{10}.$ Definiamo poi $(\alpha_1,\ldots,\alpha_m):=(\underbrace{\lambda_1,\ldots,\lambda_1}_{m_1},\ldots,\underbrace{\lambda_s,\ldots,\lambda_s}_{m_s})$ ed infine

$$(x - \alpha)_{[0]} := 1$$
 , $(x - \alpha)_{[1]} := x - \alpha_1$,
 $(x - \alpha)_{[i]} := (x - \alpha_1) \cdots (x - \alpha_i) \text{ per } i = 1, \dots, m.$

Osservazione 10.17. Nelle ipotesi e con le notazioni della nota 10.16 si hanno le seguenti relazioni:

(1) Se $i \neq l$, allora

$$\Delta[\lambda_1:v_1,\ldots,\lambda_s:v_s] = \frac{\Delta[\lambda_1:v_1,\ldots,\lambda_i:v_i^-,\ldots,\lambda_s:v_s] - \Delta[\lambda_1:v_1,\ldots,\lambda_l:v_l^-,\ldots,\lambda_s:v_s]}{\lambda_p - \lambda_i}$$

(2)
$$\Delta[\lambda_1:v_1] = \frac{v_{1,m_1-1}}{(m_1-1)!}$$
.

<u>Dimostrazione.</u> Direttamente dal lemma 10.10 e dalla osservazione 10.11.

Osservazione 10.18. Con le notazioni della nota 5.16 vale

$$H[\lambda_1 : v_1, \dots, \lambda_s : v_s] = \sum_{i=0}^{m-1} \Delta[\lambda_1 : v_1, \dots, \lambda_s : v_s]_{[i]} (x - \alpha)_{[i]}.$$

Dimostrazione. MANCA

Esempio 10.19. Calcoliamo H:=H[1:(3),2:(7,1)] con il metodo della osservazione 10.18. MANCA

Esempio 10.20. Calcoliamo H := H[0:(6,2,10),1:(3,4)] con il metodo della osservazione 10.18. MANCA

Nota 10.21. I calcoli che utilizziamo nell'osservazione 10.18 possono essere semplificati mediante il seguente schema alle differenze che illustriamo per il caso

$$H = H[\lambda_1 : (v_{10}, v_{11}, v_{12}), \lambda_2 : (v_{20}), \lambda_3 : (v_{30}, v_{31}), \lambda_4 : (v_{40}, v_{41})].$$

$$\lambda_1:(v_{10},v_{11},v_{12})$$

MANCA SPIEGAZIONE. È chiaro che nella diagonale superiore otteniamo i coefficienti $\Delta[\lambda_1:v_1,\ldots,\lambda_s:v_s]_{[i]}$.

Esempio 10.22. Calcoliamo H = H[0:(-1,-2),1:(0,10,40)]. MAN-CA

Esempio 10.23. Calcoliamo H = H[1:(2,5,6),2:(11),3:(0,-27),4:(-37,158)]. MANCA

Esempio 10.24. Per $\lambda_1 \neq \lambda_2$ calcoliamo $H = H[\lambda_1: (1,0,0), \lambda_2: (0,0)]$. MANCA

Definizione 10.25. Per $k=1,\ldots,s$ e $j=0,\ldots,m_k-1$ definiamo H_{kj} come la soluzione del problema di interpolazione $H_{kj}^{(\alpha)}(\lambda_\beta)=\delta_{k\beta}\delta_j^\alpha$ per $\beta=1,\ldots,s$ ed $\alpha=0,\ldots,m_\beta-1$.

Abbiamo quindi $H_{10} = H(\lambda_1 : (1, 0, \dots, 0), \dots), H_{11} = H(\lambda_1 : (0, 1, \dots, 0), \dots), H_{12} = H(\lambda_1 : (0, 0, 1, \dots, 0), \dots), \dots, H_{20} = H(\lambda_2 : (1, 0, \dots, 0), \dots), H_{21} = H(\lambda_2 : (0, 1, \dots, 0), \dots), \dots$

I polinomi H_{kj} sono detti polinomi di interpolazione fondamentale di Hermite.

Nell'esempio 10.24 abbiamo calcolato H_{10} per $m_1 = 3$, $m_2 = 2$.

Proposizione 10.26. Nella situazione della definizione 10.25 siano adesso dati i numeri complessi v_{kj} per $k=1,\ldots,s$ e $j=0,\ldots,m_k-1$. Sia $H:=H[\lambda_1:v_1,\ldots,\lambda_s:v_s]$. Allora

$$H = \sum_{k=1}^{s} \sum_{j=0}^{m_s - 1} v_{kj} H_{kj}.$$

Dimostrazione. MANCA