4816 Ernst-August Behrens: Algebren. Bibl. Inst. 1965. 3516 Claude Chevalley: Concetti fondamentali di algebra. Feltrinelli 1980. P. Cohn: Skew fields. Cambridge UP 1995, 500p. 0-521-4317-0. Pds. 55. 22647 Charles Curtis/Irving Reiner: Representation theory of finite groups and associative algebras. AMS Chelsea, 690p. $89. 3251 Max Deuring: Algebren. Springer 1968. Yu. Drozd/V. Kirichenko: Finite-dimensional algebras. Springer 1994, 250p. 3-540-53380-X. DM 128. 2838 Peter Gabriel: Unzerlegbare Darstellungen I. Man. Math. 6 (1972), 71-103. [2908] Peter Gabriel/A. Roiter/B. Keller: Representations of finite dimensional algebras. 1992/93. A fairly complete theory of finitely-represented posets and algebras with many examples. Nathan Jacobson: Finite-dimensional division algebras. Springer 1996, 280p. DM 98. I. Kantor/A. Solodnikov: Hypercomplex numbers. An elementary introduction to algebras. Springer 1989, 270p. 3-540-96980-2. DM 78. Ina Kersten: Brauergruppen von Ko''rpern. Vieweg 1990, 180p. DM 64. In den ersten Kapiteln eine gute Einfu''hrung in die zentraleinfachen Algebren, dann eingehende Darstellung des Satzes von Merkurev-Suslin. M.-A. Knus: Quadratic and hermitian forms over rings. Springer 1991, 520p. DM 198. 5063 Max Koecher/Reinhold Remmert: Reelle Divisionsalgebren. 1406 Ebbinghaus/, 125-209. 17396 Holger Petersson: An observation on real division algebras. EMS Newsletter September 2005, 20. A proof in 6 lines that there are no real division algebras (associative or not) of odd dimension > 1. Since the dimension is > 1, there exist linearly independent vectors x,y; then $\phi(t):=\det L_{x+ty}$ is a real polynomial of odd degree without real roots (by linear independency x+ty is always different from 0 and therefore $L_{x+ty}$ is invertible), a contradiction. 3065 Richard Pierce: Associative algebras. Springer 1982. 1589 Gu''nter Scheja/Uwe Storch: Lehrbuch der Algebra. 3 volumes. Teubner 1980. 1590 B. van der Waerden: Algebra. 2 volumes. Springer 1966.