26388 Emilio Acerbi/Giuseppe Buttazzo/Francesca Prinari: The class of functionals which can be represented by a supremum. J. Convex Analysis 9/1 (2002), 225-236. 6338 Marco Avellaneda: Review of "An introduction to Gamma-convergence" by Dal Maso. Bull. AMS 31 (1994), 277-283. 22872 Viktor Blasjö: The isoperimetric problem. Am. Math. Monthly 112 (2005), 526-566. 22887 Jean-Pierre Bourguignon: Calcul variationnel. Ecole Polytechnique 2012, 330p. Eur 28. U. Brechtken-Manderscheid: Introduction to the calculus of variations. Chapman & Hall 1991, 200p. 0-412-36700-9 (pb). Pds. 14. 22881 Arieal Briani/Francesca Prinari: A representation result for the Gamma-limit of supremal functionals. J. Nonlinear Convex Anal. 4/2 (2003), 245-268. 20941 Antonio Canete/Michele Miranda/Davide Vittone: Some isoperimetric problems in planes with density. Internet 2009, 40p. Francis Clarke: Functional analysis, calculus of variations and optimal control. Springer 2013, 590p. Eur 75. B. Dacorogna: Direct methods in the calculus of variations. Springer 1989, 308p. DM 120. B. Dacorogna: Introduction to the calculus of variations. World Scientific 2014, 320p. Eur 62. "Selten habe ich ein so hervorragendes Lehrbuch besprochen" (N. Ortner) Gianni Dal Maso: An introduction to Gamma-convergence. Birkhaeuser 1993, 350p. DM 138. Gamma-convergence is the correct topological notion for the study of the convergence of functionals in the calculus of variations. Ennio De Giorgi: Gamma-convergenza e G-convergenza. Boll. UMI (5) (1977), 213-220. James Eells/Andrea Ratto: Harmonic maps and minimal immersion with symmetries. Methods of ordinary differential equations applied to elliptic variational problems. Annals of Mathematics Studies 130. Princeton UP. 22896 Ivar Ekeland/Roger Temam: Convex analysis and variational problems. SIAM 1999, 400p. Eur 55. 22938 George Ewing: Calculus of variations with applications. Dover 1985, 340p. 22873 Steffen Fröhlich: Konvexe Kurven und das isoperimetrische Problem. Internet 2007, 6p. Paul Funk: Variationsrechnung und ihre Anwendungen in Physik und Technik. Springer 1962. 18228 Izrail Gelfand/Sergei Fomin: Calculus of variations. Dover 1991, 230p. Eur 10. N. Ghoussoub: Duality and perturbation methods in critical point theory. Cambridge UP 1993, 290p. 0-521-44025-4. Pds. 35. 22889 Mariano Giaquinta/Stefan Hildebrandt: Calculus of variations I. Springer 2010, 470p. Eur 119. 18174 Mariano Giaquinta/Stefan Hildebrandt: Calculus of variations II. Springer 1996, 650p. R. Hardt (ed.): Six themes on variation. AMS 2004, 150p. $29. Antoine Henrot: Extremum problems for eigenvalues of elliptic operators. Birkhäuser ca. 2005, 200p. 23567 Jürgen Jost/Xian-qing Li-Jost: Calculus of variations. Cambridge UP1998, 320p. Eur 69. 21723 Hansjörg Kielhöfer: Variationsrechnung. Vieweg + Teubner 2010, 280p. Eur 25. 4142 R. Klötzler: Mehrdimensionale Variationsrechnung. Birkha''user 1970. 18229 Cornelius Lanczos: The variational principles of mechanics. Dover 1986, 420p. Eur 18. 22933 Daniel Liberzon: Calculus of variations and optimal control theory. Amazon Ebook 2011. Eur 38. 20428 F. Maggi: Some methods for studying stability in isoperimetric type problems. Bull. AMS July 2008, 367-408. 22343 Umberto Massari/Mario Miranda/Michele Miranda: The Bernstein theorem in higher dimensions. Boll. UMI 1/2 (2008), 349-359. 19582 Hans Joachim Oberle: Variationsrechnung und optimale Steuerung. Vorlesung Univ. Hamburg 2006, 165p. Serena Parma: Problemi di minimo su spazi di funzioni convesse. Tesi, Ferrara 1991. 22880 Francesca Prinari: Relaxation and gamma-convergence of supremal functionals. Boll. UMI B 9/1 (2006), 101-132. 22883 Francesca Prinari: Semicontinuity and supremal representation in the calculus of variations. Appl. Math. Optim. 58/1 (2008), 111-145. 22882 Francesca Prinari: Semicontinuity and relaxation of L^\infty-functionals. Adv. Calc. Var. 2/1 (2009), 43-71. 27513 Francesca Prinari: Calcolo delle variazioni. Corso per la LM Univ. Ferrara, ca. 2015. 47p. 16804 Hans Sagan: Introduction to the calculus of variations. Dover 1992, 450p. $14. 10382 V. Smirnov: Cours de mathematiques superieurs. Mir 1975. Integral equations and calculus of variations. Michael Struwe: Variational methods. Springer 2008, 300p. Eur 140. J. Troutman: Variational calculus and optimal control. Springer 1996, 460p. DM 87. 22874 Andreas de Vries: Das Problem der Dido. Internet 2009, 7p. 23536 ZZ: The calculus of variations. Internet. 51 p.