18206 Andreas Bernig: Geometrische Maßtheorie. Internet 2003, 57p.

C. De Lellis: Rectifiable sets, densities and tangent measures.
EMS 2008, 130p.

17809 Marton Elekes/Tamasz Keleti: Borel sets which are null or non sigma-finite
for every translation invariant measure. Adv. Math. ... (ca. 2006), ...

17808 Marton Elekes/Tamasz Keleti: Is Lebesgue measure the only sigma-finite
invariant Borel measure? J. Math. Anal. Appl. ... (ca. 2006), ...

17782 Herbert Federer: Geometric measure theory. Springer 1996, 670p. Eur 37.

P. Hajlasz: Change of variables formula under minimal assumptions.
Colloq. Math. 64 (1993), 93-101.

R. Hardt/L. Simon: Seminar on geometric measure theory. 
Birkhaeuser 1986, 117p. DM 27.

Felix Hausdorff: Dimension und aeusseres Mass. 
Math. Annalen 79 (1918), 157-179.

Steven Jackson/R. Mauldin: On the sigma-class generated by open balls.
Math. Proc. Camb. Phil. Soc. 127 (1999), 99-108.

Tamasz Keleti/David Preiss: The balls do not generate all Borel sets using
complements and countable disjoint unions.
Math. Proc. Camb. Phil. Soc. 128 (2000), 539-547.

H. Leinfelder/C. Simader: The Brouwer fixed point theorem and the transformation
rule for multiple integrals via homotopy arguments. Expos. Math. 4 (1983), 349-355.

Fang-hua Lin/Xiao-ping Yang: Geometric measure theory.
International Press 2003, 250p. $34.

13620 Ottmar Loos: Stückweise glatte Mengen und der Satz von Stokes.
Zur Didaktik der Analysisvorlesung im 3. Semester. Internet, ca. 2000, 8p.

17811 Pertti Mattila: Geometry of sets and measures in euclidean spaces.
Fractals and rectifiability. Cambridge UP 2004, 340p. Eur 46.

P. Moran: Additive functions on intervals and Hausdorff measure.
Proc. Cambridge Phil. Soc. 42 (1946), 15-23.

Frank Morgan: Geometric measure theory.
Academic Press 2000, 230p. $70.

Washek Pfeffer: Derivation and integration.
Cambridge UP 2001, 280p. Pds 45.

C. Rogers: Hausdorff measures. Cambridge UP 1970.

27004 Giada Scarpone: Struttura degli insiemi di perimetro finito e applicazioni
alla teoria delle superfici minime. Tesi LM Ferrara ca. 2014, 105p.

884 Brian White: Some recent developments in differential geometry.
Math. Intell. 11/4 (1989), 41-47.

5682 Giuseppe Buttazzo/Bernhard Kawohl: On Newton's problem of minimial 
resistance. Math. Intell. 15/4 (1993), 7-12.