25998 Peter Adams/Darryn Bryant/Melinda Buchanan: Completing partial Latin
squares with two filled rows and two filled columns. Electronic J. Comb. 15 (2008), 26p.

24024 Ronald Alter: How many Latin squares are there?
Am. Math. Monthly 82/6 (1975), 632-634.

24034 L. Andersen/A. Hilton/C. Rodger: A solution to the embedding problem
for partial idempotent Latin squares. J. London Math. 26 (1982), 21-27.

25744 G. Appa/D. Magos/I. Mourtos: An LP-based proof for the non-existence of a
pair of orthogonal Latin squares of order 6. Op. Res. Lett. 32 (2004), 336-344.

25743 G. Appa/D. Magos/I. Mourtos: Searching for mutually orthogonal Latin squares
via integer and constraint programming. Europ. J. Op. Res. 173 (2006), 519-530.

24073 Bhaskar Bagchi: Latin squares. Resonance September 2012, 895-902.

24002 Padraic Bartlett: Latin squares. Internet 2012, 57p.
A very nice series of lectures.

25771 Jeranfer Bermudez: Study of Latin square generating polynomials.
Internet 2009, 22p.

25773 Jeranfer Bermudez/Lourdes Morales: Some properties of Latin squares -
study of mutually orthogonal Latin squares. Internet 2009, 12p.

D. Betten: Die 12 lateinischen Quadrate der Ordnung 6.
Mitt. Math. Ges. Sem. Giessen 163 (1984), 181-188.

24007 R. Bose/I. Chakrvarti/Donald Knuth: On methods of constructing sets
of mutually orthogonal Latin squares using a computer II.
Technometrics 3/1 (1961), 111-117.

24008 Carl Bracken/Gary McGuire/Harold Ward: New quasi-symmetric designs
constructed using mutually  orthogonal Lain squares and Hadamard matrices.
Internet 2006, 7p.

24113 R. Brayton/Donald Coppersmith/A. Hoffman: Self-orthogonal Latin squares
of all orders n != 2,3,6. Bull. AMS 80/1 (1974), 116-118.

A. Brouwer/A. Schrijver/G. van Rees: More mutually orthogonal Latin squares.
Discrete Math. 39 (1982), 263-281.

24000 Denis Xavier Charles: Sieves. Internet, 97p.
Connections with Latin squares on pages 44-48.

24027 Amanda Chetwynd/Susan Rhodes: Chessboard squares.
Discrete Math. 141 (1995), 47-59.

24028 Martin Chlond: Latin square puzzles.
INFORMS Trans. Educ. 13/2 (2013), 126-128.

24030 S. Chowla/Paul Erdös/E. Straus: On the maximal number of pairwise
orthogonal Latin squares of a given order. Can. J. Math. 12 (1960), 204-208.

24116 Alessia Compagnucci: Piani proiettivi finiti e quadrati latini.
Sintesi di una tesi Univ. Roma 3. 2004, 17p.

24005 J. Denes/A. Keedwell: Latin squares and their applications.
Academic Press 1974.

25647 J. Denes/A. Keedwell (ed.): Latin squares - new developments in the theory
and applications. North-Holland 1991, 450p. Eur 33.

24032 Tamas Denes: Latin squares and codes. Internet 2013, 6p.

24094 Jorge Dubcovsky: Double block designs - Latin squares. Internet 2011, 11p.

24006 Trevor Evans: Review of the book "Latin squares and their applications"
by Denes/Keedwell. Bull. AMS 82/3 (1976), 468-471.

24090 Alex Griffith/Adam Parker: A Gröbner basis approach to number puzzles.
Internet ca. 2009, 8p.

24043 Aiso Heinze/Mikhail Klin: Links between Latin squares, nets, graphs and
groups - work inspired by a paper of A. Barlotti and K. Strambach.
El. Notes Discrete Math. 23 (2005), 13-21.

23468 Xiang-dong Hou/Alexandr Nechaeve: A construction of finite Frobenius
rings and its application to partial difference sets. J. Alg. 309 (2007), 1-9.

24107 Rosa Huang/Gian-Carlo Rota: On the relations of various conjectures
on Latin squares and straightening coefficients. Discrete Math. 128 (1994), 225-236.

24091 Dominic Klyve/Lee Stemkoski: Greco-Latin squares and a mistaken
conjecture of Euler. Internet 2003, 15p.

24046 Stefan Laendner/Olgica Milenkovic: LDPC codes based on Latin squares -
cycle structure, stopping, and trapping set analysis. Internet 2004, 27p.

9008 Charles Laywine/Gary Mullen: Discrete mathematics using Latin squares.
Wiley 1998, 330p. $119.

25630 Harris MacNeish: Euler squares. Ann. Math. 23/3 (1922), 221-227.

26315 Alessia Massarutto: Strutture di incidenza e statistica combinatoria.
Tesi LM Ferrara 2015, 85p.

24120 Brendan McKay/Alison Meynert/Wendy Myrvold: Small Latin squares,
quasigroups and loops. Internet ca. 2005, 28p.

24026 Brendan McKay/Ian Wanless: On the number of Latin squares.
Ann. Comb. 9 (2005), 335-344.

25772 Lourdes Morales: Some properties of Latin squares - study of maximal sets
of Latin squares. Internet 2010, 17p.

7059 Gary Mullen: A candidate for the "next Fermat problem".
Math. Intell. 17/3 (1995), 18-21.
The candidate proposed is whether there exist n-1 mutually orthogonal
latin squares if and only if n is a prime power.

24078 Hiroyuki Nakasora: Mutually orthogonal Latin squares and self-complementary
designs. Math. J. Okayama Univ. 48 (2006), 21-31.

25631 D. Norton/Sherman Stein: An integer associated with Latin squares.
Proc. AMS 7 (1956), 331-334.

24079 Shmuel Onn: A colorful determinantal identity, a conjecture of Rota,
and Latin squares. Internet ca. 1997, 4p.

24081 Roberto Padua: Group-theoretic reduction of Latin squares in
experimental designs. Liceo J. Higher Ed. Res. 5/2 (2008), 19-36.

24082 Ryan Pedersen/Timothy Vis: Sets of mutually orthogonal  sudoku
Latin squares. College Math. J. 40/3 (2009), 174-181.

24102 Terry Ritter: Latin squares - a literature survey. Internet ca. 1999, 21p.

24108 Barbara Rosso: I quadrati latini. Tesina Univ. Torino 2008, 10p.

24022 Maximilian Schlund: Graph decompositions, Latin squares, and games.
Diplomarbeit TU München 2011, 98p.

24130 Douglas Stones: The many formulae for the number of Latin rectangles.
El. J. Comb. 17 (2010), 46p.

25606 Anne Penfold Street/Deborah Street: Combinatorics of experimental design.
Oxford UP 1987, 400p.

24138 Jason Tang: Latin squares and their applications. Internet 2007, 15p.

25794 Christopher Robinson Tompkins: Latin square Thue-Morse sequences are overlap-free.
Discrete Math. Theor. Comp. Sci. 9/1 (2007), 239-246.

24230 Jordy Vanpoucke: Mutually orthogonal latin squares and their generalizations.
Master thesis Univ. Ghent 2012, 79p.

24239 Ian Wanless: Transversals in Latin squares. Internet 2007, 51p.

24004 Wikipedia: Latin square and related topics. Internet 2013, 55p.

25621 Wikipedia: Small Latin squares and quasigroups. Wikipedia 2014, 2p.

23999 ZZ: Orthogonal latin squares and finite projective planes. Internet, 9p.