K. Alligood/T. Sauer/J. Yorke: Chaos. An introduction to dynamcal systems.
Springer 1997, 600p. 3-540-94677-2. DM 64.

L. Arnold/H. Crauel/J.-P. Eckmann (ed.): Lyapunov exponents.
SLN Math. 1486 (1991).

Vladimir Arnold: Small denominators I-III. 
Trans. AMS 46 (1965), 213-284, Russ. Math. Surveys 18/5 (1963), 9-36, 18/6 
(1963), 85-193.

4050 J. Banks a.o.: On Devaney's definition of chaos.
Am. Math. Monthly 99 (1992), 332-334. [4378]
Probably one must also suppose that there are at least two
different periodic orbits.

Jean-Benoit Bost: Tores invariants des systemes dynamiques hamiltoniens. 
Asterisque 133/134 (1985), 213-284. Should be an excellent introduction to 
this theme.

2527 Giulio Casati (ed.): Il caos. Le Scienze 1991.

M. Casdagli: Chaos and deterministic versus stochastic nonlinear modeling.
J. Royal Statist. Soc. B 54 (1992), 303-328.

7979 Barry Cipra: A new theory of turbulence causes a stir among experts.
Science 17 May 1996, 951. On a new paper of Grigory Barenblatt and Alexandre
Chorin.

Pierre Collet/Jean-Pierre Eckmann: Iterated maps on the interval as dynamical
systems. Birkhäuser 1980.

6631 James Crutchfield/J. Doyne Farmer/Norman Packard/Robert Shaw: Il caos.
6626 Israel, 33-44.

18120 Paul Cull: Linear fractionals - simple models with chaotic-like behavior.
Internet 2002, 12p.

4810 Predrag Cvitanovic: Circle maps: irrationally winding.
4740 Waldschmidt, 631-658.

935 J. Demongeot/E. Goles/M. Tchuente (ed.): Dynamical systems and cellular 
automata. Academic Press 1985.

575 Robert Devaney: An introduction to chaotic dynamical systems. 
Benjamin/Cummings 1986.

2528 Robert Devaney: Caos e frattali. Addison-Wesley 1990.

Robert Devaney: A first course in chaotic dynamical systems.
Addison-Wesley 1992, 300p. 0-201-55406-2.

Robert Devaney/M. Durkin: The exploding exponential and other chaotic 
bursts in complex dynamics. Am. Math. Monthly 98 (1991), 217-233.

6467 William Ditto/Louis Pecora: Das Chaos meistern.
Spektrum 1993/11, 46-53. Manche Systeme mit chaotischem Verhalten kann man 
nun beherrschen. Neuartige Regelungstechniken erlauben, Laser, elektronische 
Schaltkreise und sogar arrhythmisch schlagende Tierherzen zu stabilisieren.

William Ditto/S. Rauseo/M. Spano: Experimental control of chaos.
Physical Review Letters 65/26 (1990), 3211-3214.

335 M. Dodson/J. Vickers (ed.): Number theory and dynamical systems.
Cambridge UP 1989.

5642 Robert Easton: Review of the book "Chaotic transport in dynamical 
systems" by Stephen Wiggins. Bull. AMS 28 (1993), 398-402.

23805 Jean-Pierre Eckmann/David Ruelle: Ergodic theory of chaos and strange
attractors. Rev. Modern Phys. 57/3 (1985), 617-656.

10734 H. Fang: The developing structure of dynamical systems.
LANL comp-gas/9509004 (1995), 5p.

M. Field/M. Golubitsky: Symmetry in chaos. Oxford UP 1992.

J. Flachsmeyer/R. Fritsch/Hans-Christian Reichel (ed.): Mathematik interdisziplinär.
Shaker 2000.

417 John Franks: Review of Gleick's book "Chaos".
Math. Intell. 11/1 (1989), 65-69. Discussion on p. 69-71.

421 John Franks: Comments on the responses to my review of [Gleick's] "Chaos". 
Math. Intell. 11/3 (1989), 12-13.

A. Gaponov-Grekhov/M. Rabinovich: Nonlinearities in action. Oscillations, 
chaos, order, fractals. Springer 1992, 190p. 3-540-51988-2. DM 78.

A. Garfinkel/M. Spano/William Ditto/J. Weiss: Controlling cardiac chaos.
Science 257 (1992), 1230-1235.

4019 Wolfgang Gerok (ed.): Ordnung und Chaos in der unbelebten und belebten 
Natur. Wiss. Verlagsgesellschaft 1990.

Robert Gilmore/Marc Lefranc: The topology of chaos. Wiley 2002, 500p.

27987 Antonio Giorgilli: La geometria del caos - catastrofi, biforcazioni, attrattori.
Mat. Cultura Soc. Aprile 2019, 5-33.

3749 James Gleick: Caos. Rizzoli 1989.

419 James Gleick: [Reply to 418 Hirsch.]
Math. Intell. 11/3 (1989), 8-9.

18009 Martin Golubitsky/Ian Stewart: Nonlinear dynamics of networks -
the groupoid formalism. Bull. AMS 43/3 (2006), 305-364.

P. Grassberger/I. Procaccia: Measuring the strangeness of strange attractors.
Phys. D 9 (1983), 189-208.

5692 Matthew Grayson/Bruce Kitchens/George Zettler: Visualizing toral 
automorphisms. Math. Intell. 15/2 (1993), 63-65.

Denny Gulick: Encounters with chaos. 

M. Herman: Sur la conjugaison differentiable des diffeomorphismes du 
cercle a' des rotations. Publ. IHES 49 (1979), 5-234.

M.Herman: Sur les courbes invariantes par les diffeomorphismes de 
l'anneau I-II. Asterisque 103-104 (1983), Asterisque 144 (1986).

418 Morris Hirsch: Chaos, rigor and hype.
Math. Intell. 11/3 (1989), 6-8.

Lars Hoermander: The boundary problem of physical geodesy.
Arch. Rat. Mech. Anal. 62 (1976), 1-52.

R. Holmgren: A first course in discrete dynamical systems.
Springer 1994, 210p. 3-540-94208-4. DM 48.

Frank Hoppensteadt: Analysis and simulation of chaotic systems.
Springer 1993, 300p. 3-540-97916-6. $49.

4084 C.S. Hsu: Cell-to-cell mapping. Springer 1987.

4051 J. Jensen: Chaotic dynamical systems with a view towards statistics.
Dept. Theor. Statistics Aarhus 245 (1992). [4373]

K. Kaneko (ed.): Theory and applications of coupled map lattices.
Wiley 1993, 190p. Pds. 40.

Y. Katznelson/D. Ornstein: The differentiability of the conjugation of 
certain differomorphisms of the circle.
Erg. Theory and Dyn. Systems 9 (1989), 643-680.

16539 Karsten Keller: Diskretes logistisches Wachstum - vom einfachen biologischen Modell
zu einer reichhaltigen Mathematik. In Flachsmeyer/Fritsch/Reichel (2000), ...

6620 Jonathan King: Billiards inside a cusp.
Math. Intelligencer 17/1 (1995), 8-16.

Jonathan King: Three problems in search of a measure.
Am. Math. Monthly 101/7 (1994), 609-628.

K. Khanin/Ya. Sinai: A new proof of M. Herman's theorem.
Comm. Math. Phys. 112 (1987), 89-101.

Olga Ladyzhenskaya: Attractors for semigroups and evolution equations.
Cambridge UP 1991, 73p. 0-521-39090-3. $44. Based on lectures the author 
gave in Rome.

23814 Muthusamy Lakshmanan: Nonlinear dynamics - challenges and perspectives.
Pramana J. Phys. 64/4 (2005), 617-632.

A. Lasota/M. Mackey: Chaos, fractals, and noise: Stochastic aspects of 
dynamics. Springer 1993, 480p. 3-540-94049-9. DM 88.

11914 M. Lefranc a.o.: Combining topological analysis and symbolic
dynamics to describe a strange attractor and its crises.
Phys. Rev. Lett. 73 (1994), 1364-1367.

T. Li/J. Yorke: Period three implies chaos.
Am. Math. Monthly 82 (1975), 985-992.

Edward Lorenz: Deterministic nonperiodic flow.
J. Atmospheric Sci. 20 (1963), 130-141.

27479 Edward Lorenz: Predictability - Does the flap of a butterfly's wings in Brazil
set of a tornado in Texas? AAAS Meeting 1972, 5p.

14388 Mikhail Lyubich: The quadratic family as a qualitatively
solvable model of chaos. Notices AMS October 2000, 1042-1052.

K. Mainzer: Thinking in complexity. Springer 1994, 330p. 3-540-57597-9. DM 58.

420 Benoit Mandelbrot: Chaos, Bourbaki, and Poincare'.
Math. Intell. 11/3 (1989), 10-12.

7069 Mario Markus: Ljapunow-Diagramme. Spektrum 1995/4, 66-73.

7166 Robert May: Necessity and change. Deterministic chaos in ecology
and evolution. Bull. AMS 32 (1995), 291-308.

McCauley: Chaos, dynamics and fractals.
Cambridge UP 1993, 350p. 0-521-41658-2. Pds. 50.

4538 Michel Mendes-France: Chaos implies confusion.
335 Dodson/Vickers, 137-152.

23813 John Milnor: On the concept of attractor. Comm. Math. Phys. 99 (1985), 177-195.

23783 K. Mischaikow/M. Mrozek/A. Szymczak/J. Reiss: From time series to symbolic
dynamics - an algebraic topological approach. Internet 1997, 30p.

T. Mullin (ed.): The nature of chaos. Oxford UP 1993.

Edward Ott/Celso Grebogi/James Yorke: Controlling chaos.
Physical Review Letters 64/11 (1990), 1196-1199.

Jacob Palis/Floris Takens: Hyperbolicity and sensitive chaotic dynamics.
Cambridge UP 1993, 240p. 0-521-39064-8. Pds. 30.

Louis Pecora/T. Carroll: Synchronization in chaotic systems.
Physical Review Letters 64/8 (1990), 821-824.

908 Heinz-Otto Peitgen/Peter Richter: The beauty of fractals. 
Springer 1986.

I. Percival/F. Vivaldi: Arithmetical properties of strongly chaotic
motions. Physica 25 D (1987), 105-130.

P. Plaschko/K. Brod: Nichtlineare Dynamik, Bifurkation und chaotische
Systeme. Vieweg 1995, 230p. 3-528-06560-5.

15136 Peter Plath: Jenseits des Moleku''ls. Vieweg 1997, 220p. Eur 41.

6509 Christoph Po''ppe: Das totale Chaos. Spektrum 1994/5, 29-32.
Auch fuer kontinierliche dynamische Systeme ist voellige Unvorhersehbarkeit 
durchaus nicht selten.

7116 Christoph Po''ppe: Reste von Ordnung im Unendlichdimeensionalen.
Spektrum 1995/9, 22-32. Kleine Nenner und kleine Zaehler.

10294 Christoph Po''ppe: [Chaos.]
Spektrum 1997/8, 12-17. Ein einfaches nichtlineares dynamisches System
wechselt mehrfach zwischen geordnetem und chaotischem Verhalten, wenn
man einen einzigen Systemparameter variiert.

Juergen Poeschel: Integrability of Hamiltonian systems on Cantor sets.
Comm. Pure and Appl. Math. 35 (1982), 653-695.

20137 Mason Porter/Steven Lansel: Mushroom billiards.
Notices AMS March 2006, 334-337.

23802 David Ruelle: Strange attractors. Math. Intell. ... (1980), 126-137.

David Ruelle: Deterministic chaos. The science and the fiction.
Proc. Royal Soc. London A 42 (1990), 241-248.

4139 David Ruelle: Caso e caos. Boringhieri 1992.

18127 David Ruelle: What is a strange attractor?
Notices AMS August 2006, 764-765, 768. With a comment by Bill Casselman.

23840 David Ruelle/Floris Takens: On the nature of turbulence.
Comm. Math. Phys. 20 (1971), 167-192.

H. Ruessmann: Kleine Nenner I-II. 
Nachr. Akad. Wiss. Goettingen (1970), 67-105, (1972), 1-10.

6353 Dierk Schleicher: Wann kann man ein nichtlineares dynamisches System 
geradebiegen. Spektrum 1994/12, 96-99. Der Fields-Preistraeger 
Jean-Christophe Yoccoz hat in einem Spezialfall das Problem der kleinen 
Nenner vollstaendig geloest.

5862 Hans-Christoph Schulz/Sascha Hilgenfeldt: Experimente zum Chaos.
Spektrum 1994/1, 72-81.

2426 Heinz Schuster: Deterministic chaos. VCH 1988.

A. Sharkovsky: Coexistence of cycles of a continuous map of the line into
itself. Ukrain. Mat. Zh. 16 (1964), 61-71.

L. Smith: Local optimal prediction. Exploiting strangeness and the
variation of sensitivity to initial conditions.
Phil. Trans. Royal Soc. London 348 (1994), 371-381.

3826 R. Sole'/J. Valls: On structural stability and chaos in biological 
systems. J. Theor. Biol. 155 (1992), 87-102. [4373]

12124 Colin Sparrow: The Lorenz equations - bifurcations, chaos, and
strange attractors. Springer 1982.

13214 Ian Stewart: Traces of symmetric chaos. Science 7 April 2000, 57-58.

T. Stoppard: Arcadia. Faber and Faber 1993.

14617 Volkhard Stu''rzbecher: Bilder, die sich selber malen.
Spektrum 2001/4, 78-85.

G. Sugihara/Robert May: Nonlinear forecasting as a way of distinguishing
chaos from measurement error in time series.
Nature 344 (1990), 734-741.

Floris Takens: Detecting strange attractors in turbulence.
SLN 898 (1981), 366-381.

11915 Nicholas Tufillaro a.o.: Topological time series analysis
of a string experiment and its synchronized model.
Phys. Rev. E 51 (1995), 164-174.

F. Vivaldi: Arithmetical theory of Anosov diffeomorphisms.
Proc. Royal Soc. London A 413 (1987), 97-107.

Stephen Wiggins: Chaotic transport in dynamical systems.
Springer 1992, 300p. 3-540-97522-5. $ 40.
A pioneering book about a fascinating new field of research. "By transport 
I mean motion between regions describing qualitatively different types of 
motion in the phase space of some dynamical system," says the author.

R. Wolff: Local Lyapunov exponents. Looking closely at chaos.
J. Royal Statistical Soc. B 54 (1992), 353-357.

Roman Worg: Deterministisches Chaos. Bibl. Inst. 1993.

4811 Jean-Christophe Yoccoz: An introduction to small divisors problems.
4740 Waldschmidt, 659-679.