[For Group theory in physics look in the Physics folder!] 23124 Rüdiger Achilles/Andrea Bonfiglioli: The early proofs of the therem of Campbell, Baker, Hausdorff, and Dynkin. Arch. Hist. Ex. Sci. 66 (2012), 295-358. 19941 Ilka Agricola: Zur Geschichte der Ausnahme-Liegruppe G2. Mitt. DMV 15 (2007), 242-248. 20703 Ilka Agricola: Old and new on the exceptional group G2. Notices AMS September 2008, 922-928. 1755 P. Alexandrov (ed.): Die Hilbertschen Probleme. Leipzig 1983. 23873 Vladimir Arnold: Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a' l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16/1 (1966), 319-361. A. Arvanitoyerogos: An introduction to Lie groups and the geometry of homogeneous spaces. AMS 2003, 140p. $29. 4539 Lina Bassi: Gruppi di Lie e algebre di Lie. Tesi, Ferrara 1992. 23820 Manfred Böhm: Liegruppen und Liealgebren in der Physik. Springer 2011, 570p. Eur 45 (Ebuch). 3066 Nicolas Bourbaki: Lie groups and Lie algebras. Springer 1989. D. Bump: Lie groups. Springer 2004, 450p. Eur 65. "The book is nicely written and efficiently organized ... It is a very important addition to existing literature on the subject." (EMS Newsletter) 23189 Peter Cameron: Notes on classical groups. Internet 2000, 96p. Beautiful. R. Carter/G. Segal/I. Macdonald: Lectures on Lie groups and Lie algebras. Cambridge UP 1995, 190p. 0-521-49579-2. Pds. 14. Jean-Yves Charbonnel: Orbites fermees et orbites temperees. Ann. Sci. ENS 23 (1990), 123-149. An orbit is tempered if integration over it is a tempered distribution. 2652 M. Cowling: Rigidity for lattices in semisimple Lie groups: von Neumann algebras and ergodic actions. Rend. Sem. Mat. Torino 47 (1989), 1-37. 459 Morton Curtis: Matrix groups. Springer 1984. S. Dani (ed.): Lie groups and ergodic theory. Tata Inst. 1998. Leonard Dickson: Linear groups. Teubner 1901. Jean Dieudonne': La geometrie des groupes classiques. Springer 1963. D. Epstein: Almost all subgroups of a Lie group are free. J. Algebra 19 (1971), 261-262. 22984 Hans Freudenthal/H. de Vries: Linear Lie groups. Academic Press 1969. Hillel Furstenberg: Stiffness of group actions. In Dani 1998, 105-117. Roe Goodman/Nolan Wallach: Symmetry, representations and invariants. Springer 2009, 720p. Eur 56. A. Hahn/O. O'Meara: The classical groups and K-theory. Springer 1989, 590p. DM 198. 17426 Brian Hall: Lie groups, Lie algebras, and representations. Springer 2003, 350p. $52. 2828 T. Hawkins: Hypercomplex numbers, Lie groups, and the creation of group representation theory. Arch. Hist. Ex. Sc. 8 (1972), 243-287. 1536 Wolfgang Hein: Struktur- und Darstellungstheorie der klassischen Gruppen. Springer 1990. 2550 Sigurdur Helgason: Differential geometry, Lie groups, and symmetric spaces. Academic Press 1978. 1570 Sigurdur Helgason: A centennial: Wilhelm Killing and the exceptional groups. Math. Intell. 12/3 (1990), 54-57. 3177 Joachim Hilgert/Karl Heinrich Hofmann/Jimmie Lawson: Lie groups, convex cones, and semigroups. Oxford UP 1989. 4613 Joachim Hilgert/Karl-Hermann Neeb: Lie-Gruppen und Lie-Algebren. Vieweg 1991. A very good introduction. 5752 Karl Heinrich Hofmann: Einfuehrung in die Theorie der Liegruppen. Vorlesungsmanuskript in 2 Teilen von Falko Lorenz. Tuebingen SS 1963. 2057 Karl Heinrich Hofmann: Einige Ideen Sophus Lies - hundert Jahre danach. In 2790 Chatterji/, 93-125. 5841 Karl Heinrich Hofmann: Besprechung des Buches "Lie groups and algebraic groups" von Onishchik/Vinberg. Jber. DMV 96 (1994), B9-15. Karl Heinrich Hofmann/Sidney Morris: The Lie theory of connected pro-Lie groups. EMS 2007, 680p. Eur 88. W. Hsiang: Lectures on Lie groups. World Scientific 200, 120p. $32. 23887 Vladimir Ivancevic/Tijana Ivancevic: Lecture notes in Lie groups. Internet 2011, 74p. Nice and useful introduction with interesting applications to biomechanics, e.g. to the prediction of brain or skeletal injuries. Irving Kaplansky: Lie algebras and locally compact groups. Chicago UP 1971. 23863 Boris Khesin/Robert Wendt: The geometry of infinite-dimensional groups. Springer 2009, 300p. Eur 43 (Ebuch). Anthony Knapp: Lie groups beyond introduction. Birkaeuser 1996, 660p. 3-7643-3926-8. DM 78. 27916 Anthony Knapp: Review of the books "Matrix groups" by A. Baker and "Lie groups" by Wulf Rossmann. Am. Math. Monthly 110/5 (2003), 446-455. 23812 Boris Kolev: Lie groups and mechanics. Internet 2004, 17p. 21499 Yvette Kosmann-Schwarzbach: Groups and symmetries. Springer 2010, 190p. Eur 40. 23933 H. Laquer: Invariant affine connections on Lie groups. Trans. AMS 331/2 (1992), 541-551. 23888 Jimmie Lawson: Matrix Lie groups and control theory. Internet 2007, 60p. 5025 Roman Liedl/Norbert Netzer: Was ist Produktintegration? 2687 Chatterji/, 247-254. 2818 G. Mackey: Unitary group representations in physics, probability, and number theory. Benjamin /Cummings 1978. 25734 James Milne: Lie algebras, algebraic groups, and Lie groups. Internet 2013, 190p. D. Montgomery/L. Zippin: Topological transformation groups. Interscience 1955. 3128 G. Mostow: Discrete subgroups of Lie groups. Adv. Math. 15 (1975), 112-123. [8194] 23698 Karl-Hermann Neeb: Infinite-dimensional Lie groups. Monastir Summer School 2006, 76p. 23808 Peter Olver: Applications of Lie groups to differential equations. Springer 2000, 510p. Eur 43. 5696 L. Pontrjagin: Topologische Gruppen. 2 volumes. Teubner, Leipzig 1957. 21972 Claudio Procesi: Lie groups. Springer 2007, 600p. Eur 52. 5561 U. Rehmann: Review of the book "The classical groups and K-theory" by Hahn/O'Meara. Jber. DMV 94 (1992), 36-38. Wulf Rossmann: Lie groups - an introduction through linear groups. Oxford UP 2002, 270p. 497 Arthur Sagle/Ralph Walde: Introduction to Lie groups and Lie algebras. Academic Press 1973. 452 D. Sattinger/O. Weaver: Lie groups and algebras with applications to physics, geometry, and mechanics. Springer 1986. 23867 Rudolf Schmid: Infinite-dimensional Lie groups with applications to mathematical physics. J. Geom. Symmetry Phys. 1 (2004), 1-67. 18239 J. Selig: Geometric fundamentals of robotics. Springer 2005, 400p. Mark Sepanski: Compact Lie groups. Springer 2007, 220p. $50. R. Steinberg: Review of the book "The classical groups and K-theory" by Hahn/O'Meara. Bull. AMS 23 (1990), 594-598. John Stillwell: Naive Lie theory. Springer 2008, 210p. Eur 42. 11596 Karl Strambach: Karl Heinrich Hofmann und die Geometrie. Seminar Sophus Lie 2 (1992), 279-293. 1631 R. Sulantke/P. Wintgen: Differentialgeometrie und Faserbuendel. Birkhaeuser 1972. K. Tapp: Matrix groups for undergraduates. AMS 2005, 170p. $29. 2763 Jacques Tits: Liesche Gruppen und Algebren. Springer 1983. 2844 Jacques Tits: Tabellen zu den einfachen Liegruppen und ihren Darstellungen. SLN Math. 40 (1967). [2889] 454 V. Varadarajan: Lie groups, Lie algebras, and their representations. Springer 1984. V. Varadarajan: An introduction to harmonic analysis on semisimple Lie groups. Cambridge UP 1989, 320 p. ISBN 0-521-34156-6. $70. "Semisimple Lie groups are symmetry groups that occur in surprisingly many situations. They are the isometry groups of Riemannian symmetric spaces, the analytic automorphism groups of bounded symmetric domains, the groups from which Eisenstein series and cusp forms are constructed in analytic numebr theory, the conformal groups of general relativity, the groups whose representations correspond to elementary particles, .... They should form part of the basic toolkit of every modern mathematician; but, in fact, the theory is relatively unknown because it is not easily accessible." (Joseph Wolf in his review of this book in Bull. AMS 28 (1993), 367-370). 20695 V. Varadarajan: Review of the book "Lie groups" by Claudio Procesi. Bull. AMS 45/4 (2008), 661-674. 17835 Max Wagner: Gruppentheoretische Methoden in der Physik. Vieweg 1998, 460p. 2730 Frank Warner: Foundations of differentiable manifolds and Lie groups. Springer 1983. 2817 Garth Warner: Harmonic analysis on semi-simple Lie groups. 2 volumes. Springer 1972. Hermann Weyl: The classical groups. Princeton UP 1941. 2783 T. Zaslavsky: The geometry of root systems and signed graphs. Am. Math. Monthly 88 (1981), 89-105. [2889] 26419 ZZ: Lie groups. Internet, 100p.