24298 Alexander Arhangelskii/Mikhail Tkachenko: Topological groups and related structures. World Scientific 2008, 790p. Eur 120. Taras Banakh/Alex Ravsky: Every regular paratopological group is completely regular. Proc. AMS ... (2016), ... 24799 Marco Bonatto: Il gruppo di Heisenberg. Tesi LM Univ. Udine 2012, 90p. 3811 W. Comfort: Topological groups. 3810 Kunen/, 1143-1263. M. Cotlar/R. Ricabarra: On the existence of characters in topological groups. Am. J. Math. 76 (1954), 375-388. 24175 Anton Deitmar: A first course in harmonic analysis. Springer 2006, 190p. Eur 53 (Ebook). Joe Diestel/Angela Spalsbury: The joys of Haar measure. AMS 2014, 340p. Eur 75. 24388 Dikran Dikranjan: Introduction to topological groups. Internet 2013, 108p. Dikran Dikranjan/I. Prodanov/L. Stoyanov: Topological groups. Dekker 1989, 300p. $ 120. Seems to be a rather beautiful book at a surely ugly and not acceptable price. 25447 Robert Ellis/Harvey Keynes: Bohr compactifications and a result of Foelner. Israel J. Math. 12 (1972), 314-330. 25969 Alessandro Figa'-Talamanca: Review of the book "Abstract harmonic analysis" by E. Hewitt/K. Ross. Bull. AMS 78/2 (1972), 172-178. 19286 Peter Flor: On groups of non-negative matrices. Compos. Math. 21/4 (1969), 376-382. 21366 Peter Flor/Peter Gruber: A note on semigroups, groups and geometric lattices. Arch. Math. 93 (2009), 253-258. A closed additive subsemigroup of a Hausdorf topological vector space is a group if and only if it satisfies natural algebraic or geometric convexity conditions. 25960 Jorge Galindo: Review of the book "Topological groups and related structures" by A. Arhangelskii/M. Tkachenko. MR2433295 (2010), 4p. 24337 Jorge Galindo/Salvador Hernandez/Ta-sun Wu: Recent results and open questions relating Chu duality and Bohr compactifications of locally compact groups. Internet ca. 2007, 14p. 7360 Paul Garrett: Smooth representations of totally disconnected groups. Internet 1995, 37p. 24206 Ralf Gramlich/Stefan Witzel (ed.): Ausarbeitungen des Seminars "Lokalkompakte Gruppen". Internet 2010, 48p. F. Greenleaf: Invariant means on topological groups. Van Nostrand 1969. Siegfried Grosser/Wolfgang Herfort: An invariance property of algebraic curves in P2(R). Rend. Circ. Mat. Palermo 33 (1984), 134-144. Siegfried Grosser/Wolfgang Herfort: Abelian subgroups of topological groups. Trans. AMS 283 (...), 211-223. Siegfried Grosser/Wolfgang Herfort: Abelian subgroups of topological groups, Academic Press 1999. Siegfried Grosser/O. Loos/M. Moskowitz: U''ber Automorphismengruppen lokalkompakter Gruppen und Derivationen von Liegruppen. Math. Zeitschr. 114 (1970), 321-339. Siegfried Grosser/R. Mosak/M. Moskowitz: Duality theory and harmonic analysis on central topological groups. Indag. Math. 35 (1973), 65-91. Siegried Grosser/M. Moskowitz: On central topological groups. Trans. AMS 127 (1967), 317-340. Siegfried Grosser/M. Moskowitz: Representation theory of central topological groups. Trans. AMS 129 (1967), 361-390. Siegfried Grosser/M. Moskowitz: Compactness conditions in topological groups I-II. J. reine u. angew. Math. 246 (1971), 1-40. Siegfried Grosser/M. Moskowitz: Harmonic analysis on central topological groups. Trans. AMS 156 (1971), 419-454. 14382 Joan Hart/Kenneth Kunen: Bohr compactifications of discrete structures. Fund. Math. 160 (1999), 101-151. S. Hartman/C. Ryll-Nardzewski: Zur Theorie der lokal-kompakten abelschen Gruppen. Coll. Math. 4 (1957), 157-188. 24202 Edwin Hewitt/Kenneth Ross: Abstract harmonic analysis I. Springer 1979, 520p. Eur 87. 25968 Joachim Hilgert: Review of the book "Locally compact groups" by Markus Stroppel. MR2226087 (2007), 1p. 24225 Karl Heinrich Hofmann: Introduction to topological groups. Internet 2005, 58p. Karl Heinrich Hofmann/Sidney Morris: The structure of compact groups. De Gruyter 2006, 860p. $148. Karl Heinrich Hofmann/Sidney Morris: The Lie theory of connected pro-Lie groups. EMS 2007, 680p. Eur 88. T. Husain: Introduction to topological groups. Saunders 1966. 2613 Reiner Lenz: Group theoretic methods in image processing. Springer 1990. 19165 George McCarty: Topology. An introduction with applications to topological groups. Dover 1967, 270p. Rather elementary, but very good explanation. Chapters: Sets and functions; Groups; Metric spaces; Topologies; Topological groups; Compactness and connectedness; Function spaces; The fundamental groups; The fundamental group of the circle; Locally isomorphic groups. P. Milnes: Continuity properties of compact right topological groups. Math. Proc. Camb. Phil. Soc. 86 (1979), 427-435. 9030 Deane Montgomery/Leo Zippin: Topological transformation groups. Interscience 1955, 290p. 24354 T. Moothathu: Topological groups. Internet ca. 2003, 58p. 24357 Sidney Morris: Pontryagin duality and the structure of locally compact abelian groups. Cambridge UP 1977, 140p. Eur 50 (Ebook). 25962 J. Oxtoby: Review of the book "Abstract harmonic analysis I" by E. Hewitt/K. Ross. MR0156915, 1p. 24205 Vern Paulsen: An introduction to the theory of topological groups and their representations. Internet 2011, 72p. 24309 Vladimir Pestov: Topological groups - where to from here? Top. Proc. 24 (2000), 421-502. 13007 L. Pontrjagin: Topological groups. 1972, 530p. (Russian) 24220 Hans Reiter/Jan Stegeman: Classical harmonic analysis and locally compact groups. Oxford UP 2000, 330p. Eur 132. 24214 Dieter Remus: The role of W. Wistar Comfort in the theory of topological groups. Top. Appl. 97 (1999), 31-49. 24370 David Roeder: Category theory applied to Pontryagin duality. Pacific J. Math. 52 (1974), 519-527. 26166 Joseph Rosenblatt: Review of the book "The joys of Haar measure" by J. Diestel/A. Spalsbury. Bull. AMS ... (2015), 6p. 25965 Kenneth Ross: Review of the book "Pontryagin duality and the structure of locally compact abelian groups" by Sidney Morris. MR0442141, 1p. 24271 Markus Stroppel: Locally compact groups. EMS 2006, 300p. Eur 72. Stevo Todorcevic: Topics in topology. Springer LN Math. 1652 (1997). Concise and modern account of function space theory, semigroup structure on the Stone-Cech compactification (with a topological proof of van der Waerden's theorem), compact and compactly generated groups, and hyperspaces. Vladimir Uspenskii: The epimorphism problem for Hausdorff topological groups. Top. Appl. 57 (1994), 287-294. The author gives an example of an epimorphism in the category of Hausdorff topological groups whose image is not dense. 24290 Andre' Weil: L'integration dans les groupes topologiques et ses applications. Hermann 1979, 160p. Eur 20. 23439 Wikipedia: Pontryagin duality. Wikipedia 2012. Francois Ziegler: Subsets of R^n which become dense in any compact group. J. Alg. Geom. 2 (1993), 385-387. The image of a polynomial map is dense in any compact group.