W. Borho: Befreundete Zahlen. In 1847 Borho, 5-38. A. Brauer: On the non-existence of odd perfect numbers of form ... Bull. AMS 49 (1943), 712-718. 23662 Philippe Ellia: A remark on the radical of odd perfect numbers. Fibonacci Q. 50/3 (2012), 231-234. 23664 Philippe Ellia: On the distance between perfect numbers. Internet 2012, 4p. 26638 Philippe Ellia/Paolo Menegatti: Ramanujan-Nagell type equations and perfect numbers. Internet 2014, 4p. S. Fletcher/Pace Nielsen/Pascal Ochem: Sieve methods for odd perfect numbers. Math. Comp. ... (2012), ... 25275 Graeme Cohen/Herman te Riele: Iterating the sum-of-divisors function. Experim. Math. 5/2 (1996), 91-100. 11556 Graeme Cohen/Herman te Riele: On phi-amicable pairs. Math. Comp. 67 (1998), 399-411. 24879 Graeme Cohen/Ronald Sorli: On odd perfect numbers and even 3-perfect numbers. Integers 12A (2012), 16p. 27357 Marc Deleglise: Bounds for the density of abundant integers. Exper. Math. 7/2 (1998), 137-143. Peter Hagis: A lower bound for the set of odd perfect numbers. Math. Comp. 27 (1973), 951-953. Kevin Hare: More on the total number of prime factors of an odd perfect number. Math. Computation ... (2004), ... An odd perfect number, if it exists, has at least 47 (not necessarily distinct) prime factors. Kevin Hare: New techniques for bounds on the total number of prime factors of an odd perfect number. Math. Comp. 76 (2007), 2241-2248. H. Kanold: Verschärfung einer notwendigen Bedingung für die Existenz einer ungeraden vollkommenen Zahl. J. reine u. angew. Math. 184 (1942), 116-124. 25369 Oliver Knill: The oldest open problem in mathematics. Internet 2007, 26p. Exercises and conjectures about perfect numbers. 23663 Florian Luca/Carl Pomerance: On the radical of a perfect number. New York J. Math. 16 (2010), 23-30. 18974 Pace Nielsen: Odd perfect numbers have at least nine distinct prime factors. Math. Comp. 76 (2007), 2109-2126. Pace Nielsen: Odd perfect numbers, diophantine equations, and upper bounds. Math. Comp. ... (2015), ... 29107 Pascal Ochem/Michael Rao: Odd perfect numbers are greater than 10^{1500}. Math. Comp. 81 (2012), 1869-1877. 27428 Paul Pollack: On the greatest common divisor of a number and its sum of divisors. Mich. Math. J. 60 (2011), 199-214. 8334 Herman te Riele: A new method for finding amicable pairs. CWI Report NM-R9512 (1995), 20p. 25278 Jozsef Sandor/Borislav Crstici: Handbook of number theory II. Springer 2005, 640p. Eur 141. 26938 Christoph Scriba: Zur Entwicklung der additiven Zahlentheorie von Fermat bis Jacobi. Jber. DMV 72 (1970), 122-142. R. Steuerwald: Verschärfung einer notwendigen Bedingung für die Existenz einer ungeraden vollkommenen Zahl. Sber. Math.-Nat. Abt. Bayer. Ak. Wiss. ... (1937), 68-72. John Voight: On the nonexistence of odd perfect numbers. MASS Selecta AMS 2003, 293-300. S. Yan: Perfect, amicable and sociable numbers. A computational approach. World Scientific 1996, 340p. 9-810-22847-3. Pds. 47. 25282 Qizhi Zhou: Multiply perfect numbers of low abundancy. PhD thesis Univ. Waikato 2010, 150p.