24646 Boris Adamczewski/Yann Bugeaud/Les Davison: Continued fractions and
transcendental numbers. Ann. Inst. Fourier 56 (2006), 2093-2113.

1755 P. Alexandrov (ed.): Die Hilbertschen Probleme. Leipzig 1983.

7910 J. Allouche: Finite automata and arithmetic. Internet ca. 1994, 23.

5198 Roger Apery: Irrationalite' de zeta(2) et zeta(3).
Asterisque 61 (1979), 11-13. The author presents very briefly the ideas of 
his proof.

Alan Baker: Transcendental number theory. Cambridge UP 1975, 150p.

Katia Barre: Mesures de transcendance pour l'invariance modulaire.
CR Ac. Sci. Paris 323/5 (1996), 447-452.

Peter Bundschuh/Michel Waldschmidt: Irrationality results for theta
functions by Gel'fond-Schneider's method.
Acta Arithm. 53 (1989), 289-307, err. 78 (1996), 99.

1930 Pieter Cijsouw: Transcendence measures. Ph.D. Thesis, 1972.

23731 Marco Dalai: How would Riemann evaluate \zeta(2n)?
Am. Math. Monthly 120/2 (2013), 169-171.

N. Feldman/Yu. Nesterenko: Transcendental numbers. Springer 1989.

22823 Steven Finch: The miracoulous Bailey-Borwin-Plouffe pi algorithm.
Internet 1997, 5p.

27001 Daniel Frischemeier: \pi und Kettenbrüche. Internet 2009, 74p.

5090 Luise-Charlotte Kappe/Hans Schlickewei/Wolfgang Schwarz: Theodor 
Schneider zum Gedaechtnis. Jber. DMV 92 (1990), 111-129.

29051 Aubrey Kempner: On transcendental numbers. Trans. AMS 17 (1916), 476-482.

20485 Gerald Kuba: Über den Tangens rationaler Winkel.
Int. Math. Nachr. 208 (2008), 57-63.

1886 Serge Lang: Transcendental numbers and diophantine approximations.
Bull. AMS 77 (1971), 635-677. [3323]

23709 Kurt Mahler: Lectures on transcendental numbers. Internet, 27p.

1924 David Masser: Elliptic functions and transcendence. 
SLN Math. 437 (1975).

4538 Michel Mendes-France: Chaos implies confusion.
335 Dodson/Vickers, 137-152.

23738 M. Ram Murty/Anastasia Zaytseva: Transcendence of generalized Euler constants.
Am. Math. Monthly 120/1 (2013), 48-54.

Yu. Nesterenko: Lectures on algebraic independence.
AMS 2008, 160p. $40.

K. Nishioka: Mahler functions and transcendence.
Springer LN Math. 1631 (1996), 185. 3-540-61472-9. DM 44.

A. Parshin/I. Shafarevich (ed.): Number theory IV. Transcendental
numbers. Springer 1998, 350p. DM 158.

4590 Oskar Perron: Irrationalzahlen. De Gruyter 1947.

P. Philippon (ed.): Diophantine approximations and transcendental numbers.
De Gruyter 1992, 300p. DM 278. This field is changing its language now quite 
rapidly!

20835 Thomas Pickett/Ann Coleman: Another continued fraction for \pi.
Am. Math. Monthly 115/10, 930-933.

A. van der Poorten: A proof that Euler missed ... Apery's proof of the
irrationality of \zeta(3). Math. Intell. 1 (1978), 195-203.

24707 Martine Queffelec: Transcendence des fractions continues
de Thue-Morse. J. Number Theory 73 (1998), 201-211.

5062 Reinhold Remmert: Was ist \pi? 1406 Ebbinghaus/, 98-122.

1968 Andrei Shidlovskii: Criterion of algebraic independence of the values
of an E-function at algebraic points.
Vestnik Mosk. Univ. 44/6 (1989), 17-21. [3323]

3506 Andrei Shidlovskii: Transcendental numbers. De Gruyter 1989.

Andrei Shidlovskii: Criterion of algebraic independence of the values of an 
E-function at algebraic points. Vestnik Mosk. Univ. Mat. 44/6 (1989), 17-21.

23705 Kannan Soundararajan: Transcendental number theory. Internet 2011, 78p.

18170 Gisela Vetter: Ein neuer elementarer Irrationalitätsbeweis für \pi.
Math. Semesterber. 53 (2006), 101-107.

Stan Wagon: Is \pi normal? Math. Intell. 7/3 (1985), 65-67.

3546 Michel Waldschmidt: Nombres transcendants. SLN Math. 402 (1974).

23711 Michel Waldschmidt: Introduction to recent results in transcendental
number theory. Internet 1994, 21p.

23708 Michel Waldschmidt: Algebraic independence of transcendental numbers.
Internet 1998, 14p.

23707 Michel Waldschmidt: Algebraic dynamics and transcendental numbers.
Internet ca. 2000, 7p.

23710 Michel Waldschmidt: Open diophantine problems.
Moscow Math. J. 4/1 (2004), 245-305.

23713 Michel Waldschmidt: Hopf algebras and transcendental numbers.
Internet 2005, 21p.

23712 Michel Waldschmidt: Words and transcendence. Arxiv 0908.4034 (2009), 22p.

23704 Michel Waldschmidt: On the numbers e^e, e^{e^2} and e^{\pi^2}.
Internet 2012, 6p.

26892 Wikipedia: Pi. Internet 2017, 32p.

1938 Gisbert Wuestholz (ed.): Diophantine approximation and transcendence 
theory. SLN Math. 1290 (1987).