7399 Rita Accorsi: L'equazione funzionale della funzione zeta. Tesi, Ferrara 1994. 4540 J. Armitage: The Riemann hypothesis and the Hamiltonian of a quantum mechanical system. 335 Dodson/Vickers, 153-172. Emil Artin: Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren. Abh. Math. Sem. Hamburg 8 (1930), 292-306. 29103 Raymond Ayoub: Euler and the zeta-function. Am. Math. Monthly 81 (1974), 1067-1086. A. Beilinson: Higher regulators and values of L-functions. J. Soviet Math. 30 (1985), 2036-2070. A. Blanchard: Introduction a' la theorie analytique des nombres premiers. Dunod 1969. S. Bloch/K. Kato: L-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, vol. I, Progress in Math. 86 (1990), 333-400. 16684 Enrico Bombieri: The Rosetta stone of L-functions. Int. Math. Nachr. 196 (2004), 1-14. 21981 Enrico Bombieri: The classical theory of zeta and L-functions. Milan J. Math. 78 (2010), 11-59. 20009 Andrew Booker: Turing and the Riemann hypothesis. Notices AMS November 2006, 1208-1211. 20702 Andrew Booker: Uncovering a new L-function. Notices AMS October 2008, 1088-1094. 11909 Louis de Branges: A proof of the Riemann hypothesis. Internet June 1998, 30p. 17799 Louis de Branges: Apology for the proof of the Riemann hypothesis. Internet 2005, 16p. 17800 Louis de Branges: A proof of the Riemann hypothesis I. Internet 2005, 41p. 17801 Louis de Branges: A proof of the Riemann hypothesis II. Internet 2006, 24p. R. Brauer: On Artin's L-series with general group characters. Ann. Math. 48 (1947), 502-514. 19975 Markus Brede: Eulers Identitäten für die Werte von \zeta(2n). Math. Sb. 54 (2007), 135-140. 17929 Daniel Bump: Automorphic forms and representations. Cambridge UP 1998, 570p. Eur 48. 4788 Pierre Cartier: An introduction to zeta functions. 4740 Waldschmidt, 1-63. 25435 John Cassels/A. Fröhlich (ed.): Algebraic number theory. LMS 2010, 370p. Eur 46. 9258 Barry Cipra: Prime formula weds number theory and quantum physics. Science 20 December 1996, 2014-2015. 20177 James Cogdell/Henry Kim/M. Murty: Lectures on automorphic L-functions. AMS 2004, 280p. Eur 63. "This book is a wonderful introduction to the Langlands program." (EMS Newsletter) B. Conrey: The Riemann hypothesis. Notices AMS March 2003, 341-353. 26545 Brian Conrey: Review of the book "Lectures on the Riemann zeta function" by Henryk Iwaniec. Bull. AMS ... (2016), 6p. 17803 J. Conrey/Xiang-jin Li: A note on some positivity conditions related to zeta and L functions. Internet 1998, 10p. Counterexamples to some assertions in de Branges' method for proving the Riemann hypothesis. J. Conrey a.o.: Integral moments of \zeta and L-functions. ... (2004), ... 1929 Harold Davenport: Multiplicative number theory. Springer 1980. 23731 Marco Dalai: How would Riemann evaluate \zeta(2n)? Am. Math. Monthly 120/2 (2013), 169-171. Pierre Deligne: Valeurs de fonctions L et periodes d'integrales. Proc. Symp. Pure Math. 33/2 (1979), 313-346. 22902 Christopher Deninger: Some analogies between number theory and dynamical systems on foliated spaces. Internet ca. 1999, 24p. 16648 John Derbyshire: Prime obsession. Plume 2004, 410p. $11. 362 H. Diamond: Elementary methods in the study of the distibution of prime numbers. Bull. AMS 7 (1982), 553-589. 14409 Michael Drmota: Sieben Millenniumsprobleme I. IMN 184 (2000), 29-36. Das P-NP-Problem, die Riemannsche Vermutung, die Vermutung von Birch-Swinnerton-Dyer. 170 Harold Edwards: Riemann's zeta function. Academic Press 1974. [= 16796 Harold Edwards: Riemann's zeta function. Dover 2001, 310p. $11.] 361 William Ellison/Fern Ellison: Prime numbers. Wiley 1985. 18133 John Friedlander: Review of the book "Stalking the Riemann hypothesis" by Dan Rockmore. Notices AMS September 2006, 883-885. 23741 Jacques Gelinas: Note on a proposed proof of the Riemann hypothesis ... Internet 2013, 5p. 27850 Michael Griffin/Ken Ono/Larry Rolen/Don Zagier: Jensen polynomials for the Riemann zeta function and other sequences. Proc. Nat. Ac. Sci. 116/23 (2019), 11103-11110. Near to a proof of the Riemann conjecture? B. Gross/Don Zagier: Heegner points and derivatives of L-series. Inv. Math. 84 (1986), 225-320. Julian Havil: Gamma - exploring Euler's constant. Princeton UP, 380p. $21. Elementary, but very nice. Helmut Hasse: Bericht ueber neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkoerper. Jber. DMV 35 (1926), ..., 36 (1927), ..., 39 (1930), ... 7914 Hans Heilbronn: Zeta-functions and L-functions. In 1752 Cassels/, 204-230. Haruzo Hida: Elementary theory of L-functions and Eisenstein series. Cambridge UP 1993, 400p. 0-521-43569-2 (pb). Pds. 15. A rather advanced, but very good text. "The book under review is a tour of the elementary analytic theory of L-functions, especially those L-functions coming from algebraic number fields and from modular forms. Its emphasis on the p-adic aspects of the theory distinguishes it from any other text previously written on the subject. The book begins with a concise review in chapter 1 of algebraic number theory and the basics of p-adic analysis ... The heart of the book is found in chapters 7 and 10. Here the author describes his theory of p-adic analytic families of ordinary modular forms (the so-called ordinary Lambda-adic modular forms) and applies the theory to construct three-variable p-adic Rankin product L-functions." (Glenn Stevens) 19089 Aleksandar Ivic: The Riemann zeta-function. Dover 2003, 520p. Eur 21. 4766 Aleksandar Ivic: Mean values of the Riemann zeta function. Springer 1991. Henryk Iwaniec: Lectures on the Riemann zeta function. AMS 2014, 120p. 5383 B. Julia: Statistical theory of numbers. 4779 Luck/, 276-293. Beginning with an introduction to the Riemann hypothesis in the case of the classical zeta function, this article provides also an elementary presentation of quantum statistical mechanics and finally attempts to present the reader with a precise dictionary between the fields of number theory on the one hand and of the thermodynamics of solved quantum systems on the other. A. Karatsuba/S. Voronin: The Riemann zeta-function. De Gruyter 1992, 400p. ISBN 3-11-013170-6. DM 198. An excellent, readable and up to date, though expensive, text. A must for every mathematical library. (R. Tichy) A. Karatsuba: Complex analysis in number theory. CRC 1994. 0-8493-2866-7. 17944 Jürg Kramer: Die Riemannsche Vermutung. Elem. Math. 57 (2002), 90-95. 22861 Jeffrey Lagarias: An elementary problem equivalent to the Riemann hypothesis. Am. Math. Monthly 109 (2002), 534-543. 24390 Jeffrey Lagarias: The Riemann hypothesis - arithmetic and geometry. Internet 2007, 16p. 363 Edmund Landau: Handbuch der Lehre von der Verteilung der Primzahlen. Chelsea 1974. A. Laurincikas: On limit distribution of the Matsumoto zeta-function. Acta Arithm. 74 (1997), 31-39. 20187 Barry Mazur: Finding meaning in error terms. Bull. AMS 45/2 (2008), 185-228. 26909 Barry Mazur/William Stein: Prime numbers and the Riemann hypothesis. Cambridge UP 2016, 140p. Eur 27. [23667 Barry Mazur/William Stein: Primes. Internet (draft) 2013, 140p.] 20559 Peter Meier/Jörn Steuding: Wer die Zetafunktion kennt, kennt die Welt. Spektrum 2008/9, 86-93. 1945 Hugh Montgomery: Topics in multiplicative number theory. SLN Math. 227 (1986). Yoichi Motohashi: An explicit formula for the fourth power mean of the Riemann zeta-function. Acta Math. 170 (1993), 181-220. Yoichi Motohashi: Spectral theory of the Riemann zetafunction. Cambridge UP 1997, 230p. Pds. 30. " ... throws some light on the close connection between the zeta function and automorphic forms ... a good knowledge in the theory of zeta function is assumed, while the theory of automorphic forms is fully developed." (J. Schoißengeier) 23534 Wolfgang Müller: Die Riemannsche Vermutung. Internet. 12p. M. Murty/V. Murty: Non-vanishing of L-functions and applications. Birkha''user 1997, 210p. 3-7643-5801-7. SFR 68. 3597 Alexei Panchishkin: Non-archimedean L-functions of Siegel and Hilbert modular forms. SLN Math. 1471 (1991). 442 S.J. Patterson: An introduction to the theory of the Riemann zeta function. Cambridge UP 1988. 26532 David Platt: Numerical computations concerning the GRH. Math. Comput. ... (2016), 19p. 24350 Balthasar van der Pol: An electromechanical investigation of the Riemann zeta function in the critical strip. Bull. AMS 53/10 (1947), 976-981. 411 Karl Prachar: Primzahlverteilung. Springer 1957. M. Rapoport/N. Schappacher/P. Schneider (ed.): Beilinson's conjectures on special values of L-functions. Academic Press 1988. T. Rivoal: La fonction zeta de Riemann prend une infinite' de valeurs irrationelles aux entiers impairs. CRAS ... (2000), 267-270. Dan Rockmore: Stalking the Riemann hypothesis. Pantheon 2005, 300p. $17. A non-technical historical account. F. Roesler: Riemann's hypothesis as an eigenvalue problem. Linear Algebra Appl. 81 (1986), 153-198. Karl Rubin: The main conjectures of Iwasawa theory for imaginary quadratic fields. Inv. Math. 103 (1991), 25-68. 8337 Karl Rubin: A Stark conjecture "over Z" for abelian L-functions with multiple zeros. Internet, ca. 1995, 21p. 17715 Peter Sarnak: Problems of the millennium - the Riemann hypothesis (2004). Internet 2004, 9p. 22006 Peter Sarnak: The grand Riemann hypothesis. Milan J. Math. 78 (2010), 61-63. 27335 Peter Sarnak: Review of the book "Prime numbers and the Riemann hypothesis" by Mazur/Stein. Bull. AMS ... (2018), 2p. 1201 A. Schoenhage: Numerik analytischer Funktionen und Komplexitaet. Jber. DMV 92 (1990), 1-20. Contains some remarks on the numerics of Riemann's zeta function. M. J. Shai Haran: The mysteries of the real prime. Oxford UP 2001, 260p. Pds 45. 21029 Jörn Steuding: Value-distribution of L-functions. Springer LN Math. 1877 (2007), 320p. Eur 52. 9777 Glenn Stevens: Review of the book "Elementary theory of L-functions and Eisenstein series" by H. Hida. Bull. AMS 34 (1997), 67-71. 18131 Jeffrey Stopple: Notes on the Deuring-Heilbronn phenomenon. Notices AMS September 2006, 864-875. 6335 J. Tate: Fourier analysis in number fields and Hecke's zeta-functions. 1752 Cassels/, 305-347. This is an unaltered reproduction of Tate's doctoral thesis. R. Taylor/Andrew Wiles: Ring-theoretical properties of certain Hecke algebras. Ann. Math. 141 (1995), 553-572. E. Titchmarsh: The zeta-function of Riemann. Cambridge UP 1930. Roland van der Veen/Jan van de Craats: The Riemann hypothesis. MAA 2017, 120p. Eur 42. 18144 Otmar Venjakob: Können zeta-Funktionen diophantische Gleichungen lösen? DMV-Mitteilungen 14/3 (2006), 136-141. Nützliche kleine Übersicht über die neuere algebraische Zahlentheorie. 1931 Heinz Westphal: Ueber die Nullstellen der Riemannschen Zetafunktion im kritischen Streifen. Teubner 1938. A. Yukie: Shintani zeta functions. Cambridge UP 1993, 350p. 0-521-44804-2 (pb). Pds. 25. 29486 Alessandro Zaccagnini: Breve storia dei numeri primi. Internet 2014, 17p.