From fermigie@mathp7.jussieu.frMon Jul 8 09:02:31 1996 Date: Sun, 7 Jul 1996 21:00:48 -0400 From: Stefane fermigier To: Multiple recipients of list NMBRTHRY Subject: An elliptic curve of rank >= 22 over Q. An elliptic curve with rank >= 22 over Q. S. Fermigier, 19 May 1996. Let E : y^2 + xy + y = x^3 - 940299517776391362903023121165864 x + 10707363070719743033425295515449274534651125011362 (or in GP notation, E = [1, 0, 1, -940299517776391362903023121165864, 10707363070719743033425295515449274534651125011362] ). Let P_1,...,P_22 the point in this list : pts = [ [32741153161482344264/3025, -223089674587110979578532169697/166375], [215521674613198983365/24649, -6872949155061353554235704378947/3869893], [637312541911044643/81, -1420356190129296832193564087/729], [-11906250919327880080/361, -16580788535875788634285886853/6859], [-136152345735493381/4, -14482270545045735913281693/8], [-27830298157016213012252/7134241, 72099692861364392796183359497454267/190555577 11], [4127671322151440, 2626107692045613116291646], [6175679781777296, 2266254335997033124678449], [12047255022287093, 1061993236525943920980477], [416685837455186583191/32761, 5321268222786709669160311587369/5929741], [149915813139075767108024/10220809, 8704326838108646949177663157917117/326759263 73], [58759417448623559/4, 2030968553150713398654657/8], [237195157887349854919517/16024009, -11477798111611307979707215505421441/6414410 8027], [9568474434078537574436/687241, 319520556343135681977874272805086/569722789], [1725892668710258675291/177241, 117378050663464845770966453025039/74618461], [-35277008506980340471/1024, 48766027143946934186731674507/32768], [-2752742763529705669/121, 6000532252185982381233585699/1331], [-18552633109178014, -4665466215824339436717966], [-113251707338691187737649969/3304065361, 31015252789483147082000987237322934173 9/189920981015641], [-7572001778163591251/729, -86590661426506799357663502953/19683], [-380526048554032285152211/11242609, 73081235744931307684790623068490233/3769646 7977], [-1503889497722021588110681/42784681, -160705885170116750151534640924719585/2798 54598421] ] Then, according to GP/PARI, P_1,...,P_22 are independent in E(Q), so E is an exemple of an elliptic curve defined over Q with rank >= 22. This example was found using methods similar to those described in Koh-ichi Nagao, An example of elliptic curve over $\Q$ with rank $\geq 20$, Proc. Japan Acad., Ser. A, 69, No.~8, 1993, p.~291--293; Koh-ichi Nagao et Tomonori Kouya, An example of elliptic curve over $\Q$ with rank $> 21$, Proc. Japan Acad. Ser. A, 70, No.~4, 1994, p.~104--105; or Stefane Fermigier, Un exemple de courbe elliptique definie sur $\Q$ de rang $\geq 19$, C. R. Acad. Sci. Paris, t.~315, s'erie~I, 1992, p.~719--722; but starting from an infinite family of curves of with >= 13 over Q(t) discovered by Mestre. For the computations, I used a few tens of (Sparc) workstations for about 1 week. Since Mestre has recently found an infinite family of curves of rank >= 14 over Q(t), this could even lead to better ranks. Best regards to all, S. Fermigier PS : See http://www.eleves.ens.fr:8080/home/fermigie/dvi/rang22.dvi for a DVI version of this announce. See also http://www.eleves.ens.fr:8080/home/fermigie/elliptic.html for a collection of links to articles about elliptic curves (and related topics). Feel free to E-mail me new references or suggestions.